Decoding of cyclic codes over F2+uF2

被引:42
作者
Udaya, P
Bonnecaze, A
机构
[1] RMIT Univ, Dept Math, Melbourne, Vic 3001, Australia
[2] Univ Toulon & Var, GECT, F-83400 La Garde, France
关键词
codes over rings; cyclic codes; Gray map; self-dual codes;
D O I
10.1109/18.782165
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We give a simple decoding algorithm to decode linear cyclic cedes of odd length over the ring R = F-2 + uF(2) = {0, 1, u, (u) over bar = u + 1}, where u(2) = 0. A spectral representation of the cyclic codes over R is given and a BCH-like bound is given for the Lee distance of the codes. The ring R shares many properties of Z(4) and F-4 and admits a Linear "Gray map.".
引用
收藏
页码:2148 / 2157
页数:10
相关论文
共 15 条
  • [1] Blahut R. E., 1983, THEORY PRACTICE ERRO
  • [2] Cyclic codes and self-dual codes over F2+uF2
    Bonnecaze, A
    Udaya, P
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) : 1250 - 1255
  • [3] Calderbank A. R., 1995, Designs, Codes and Cryptography, V6, P21, DOI 10.1007/BF01390768
  • [4] Cyclic codes over Z(4), locator polynomials, and Newton's identities
    Calderbank, AR
    McGuire, G
    Kumar, V
    Helleseth, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (01) : 217 - 226
  • [5] CLASEN HL, 1978, THESIS DELFT U TECHN
  • [6] Type II codes over F2+uF2
    Dougherty, ST
    Gaborit, P
    Harada, M
    Solé, P
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (01) : 32 - 45
  • [7] THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES
    HAMMONS, AR
    KUMAR, PV
    CALDERBANK, AR
    SLOANE, NJA
    SOLE, P
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) : 301 - 319
  • [8] Liu C. L., 1973, Discrete Mathematics, V4, P171, DOI 10.1016/0012-365X(73)90080-0
  • [9] MASSEY JL, 1969, IEEE T INFORM THEORY, V15, P122, DOI 10.1109/TIT.1969.1054260
  • [10] McDonald B, 1974, PURE APPL MATH SERIE