An extension of the Fejer-Jackson inequality

被引:10
作者
Brown, G [1 ]
Wang, KY [1 ]
机构
[1] BEIJING NORMAL UNIV,DEPT MATH,BEIJING 100875,PEOPLES R CHINA
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS | 1997年 / 62卷
关键词
D O I
10.1017/S1446788700000525
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Best-possible results are established for positivity of the partial sums of Sigma sink theta(k + alpha)(-1). In fact odd sums are positive for -1 less than or equal to alpha less than or equal to alpha(0) = 2.1..., while sums with 2k terms are positive on the subinterval]0, pi - 2 mu(0) pi(4k + 1)(-1) [, mu(0) = 0.8128....This is analagous to the Gasper extension of the Szego-Rogosinski-Young inequality for cosine sums.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 6 条
[1]  
Askey R., 1986, MATH SURVEYS MONOGR, V21, P7
[2]   A CLASS OF POSITIVE TRIGONOMETRIC SUMS .2. [J].
BROWN, G ;
WILSON, DC .
MATHEMATISCHE ANNALEN, 1989, 285 (01) :57-74
[3]  
Fejer L., 1928, MONATSH MATH PHYS, V35, P305
[4]   NONNEGATIVE SUMS OF COSINE ULTRASPHERICAL AND JACOBI POLYNOMIALS [J].
GASPER, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 26 (01) :60-&
[5]   On the segment in power series, that remains limited in a circle [J].
Rogosinski, W ;
Szego, G .
MATHEMATISCHE ZEITSCHRIFT, 1928, 28 :73-94
[6]  
YOUNG WH, 1912, P LOND MATH SOC, V11, P357