Finite groups whose maximal subgroups of sylow p-subgroups admit a p-solvable supplement

被引:7
作者
Qian GuoHua [1 ]
机构
[1] Changshu Inst Technol, Dept Math, Changshu 215500, Peoples R China
基金
中国国家自然科学基金;
关键词
finite group; p-solvable group; Sylow subgroup; supplement;
D O I
10.1007/s11425-012-4485-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we show that if every maximal subgroup of a Sylow p-subgroup of a finite group has a p-solvable supplement then the group is necessarily p-solvable. This gives a positive answer to Problem 17.111 of the Kourovka Notebook (Unsolved Problems in Group Theory), which was posed by Skiba.
引用
收藏
页码:1015 / 1018
页数:4
相关论文
共 6 条
[1]  
[Anonymous], 1989, SIMPLE GROUPS LIE TY
[2]  
Conway J. H., 1985, ATLAS of Finite Groups
[3]  
[钱国华 Guo Hua QIAN], 2009, [数学学报, Acta Mathematica Sinica], V52, P125
[4]   SUBGROUPS OF PRIME POWER INDEX IN A SIMPLE-GROUP [J].
GURALNICK, RM .
JOURNAL OF ALGEBRA, 1983, 81 (02) :304-311
[5]  
HARDY G.H., 2008, An introduction to the theory of numbers, V6th
[6]  
Mazurov VD., 2010, The Kourovka Notebook: Unsolved Problems in Group Theory