On Fractional Orthonormal Polynomials of a Discrete Variable

被引:6
作者
Area, I. [1 ]
Djida, J. D. [2 ]
Losada, J. [3 ]
Nieto, Juan J. [3 ,4 ]
机构
[1] Univ Vigo, EE Telecomunicac, Dept Matemat Aplicada 2, Vigo 36310, Spain
[2] AIMS, Limbe Crystal Gardens, Southwest Regio, Cameroon
[3] Univ Santiago de Compostela, Fac Matemat, Santiago De Compostela 15782, Spain
[4] King Abdulaziz Univ, Fac Sci, Jeddah 21589, Saudi Arabia
关键词
D O I
10.1155/2015/141325
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A fractional analogue of classical Gram or discrete Chebyshev polynomials is introduced. Basic properties as well as their relation with the fractional analogue of Legendre polynomials are presented.
引用
收藏
页数:7
相关论文
共 34 条
[1]  
ABDELJAWAD T, 2013, DISCRETE DYN NAT SOC
[2]  
[Anonymous], 2008, NUMERICAL METHODS SC
[3]  
[Anonymous], 1993, An Introduction to The Fractional Calculus and Fractional Differential Equations
[4]  
[Anonymous], 2002, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Aribitrary Order
[5]  
Area I., 2015, FRACTIONAL CACULUS A, V18
[6]   APPROXIMATE CALCULATION OF SUMS I: BOUNDS FOR THE ZEROS OF GRAM POLYNOMIALS [J].
Area, Ivan ;
Dimitrov, Dimitar K. ;
Godoy, Eduardo ;
Paschoa, Vanessa .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) :1867-1886
[7]  
Atici F. M., 2007, INT J DIFFERENCE EQU, V2, P165
[8]   First order difference equations with maxima and nonlinear functional boundary value conditions [J].
Atici, Ferhan M. ;
Cabada, Alberto ;
Ferreiro, Juan B. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (06) :565-576
[9]  
Baik J., 2007, ANN MATH STUDIES, V164
[10]  
Cermák J, 2010, MATH BOHEM, V135, P179