Martin boundary of unbounded sets for purely discontinuous Feller processes

被引:4
作者
Kim, Panki [1 ,2 ]
Song, Renming [3 ]
Vondracek, Zoran [3 ,4 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Bldg 27,1 Gwanak Ro, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Bldg 27,1 Gwanak Ro, Seoul 08826, South Korea
[3] Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
[4] Univ Zagreb, Dept Math, Zagreb, Croatia
基金
新加坡国家研究基金会;
关键词
Martin boundary; Martin kernel; purely discontinuous Feller process; Levy process; HARMONIC-FUNCTIONS; INEQUALITY;
D O I
10.1515/forum-2015-0233
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Martin kernels of general open sets associated with inaccessible points for a large class of purely discontinuous Feller processes in metric measure spaces. Let D be an unbounded open set. Infinity is accessible from D if the expected exit time from D is infinite, and inaccessible otherwise. We prove that under suitable assumptions there is only one Martin boundary point associated with infinity, and that this point is minimal if and only if infinity is accessible from D. Similar results are also proved for finite boundary points of D.
引用
收藏
页码:1067 / 1085
页数:19
相关论文
共 15 条
[1]  
[Anonymous], 2012, Interdiscip. Math. Sci., DOI DOI 10.1142/9789814383585
[2]  
[Anonymous], INTERDISCIP MATH SCI
[3]   Estimates and structure of α-harmonic functions [J].
Bogdan, Krzysztof ;
Kulczycki, Tadeusz ;
Kwasnicki, Mateusz .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 140 (3-4) :345-381
[4]  
Bogdan K, 2015, T AM MATH SOC, V367, P477
[5]  
Chung K. L., 1986, SEMINAR STOCHASTIC P, P63
[6]  
Cygan W., 2015, PREPRINT
[7]  
Juszczyszyn T., 2015, PREPRINT
[8]   Parabolic Littlewood-Paley inequality for φ (-Δ)-type operators and applications to stochastic integro-differential equations [J].
Kim, Ildoo ;
Kim, Kyeong-Hun ;
Kim, Panki .
ADVANCES IN MATHEMATICS, 2013, 249 :161-203
[9]  
Kim P., 2015, PREPRINT
[10]   GREEN FUNCTION ESTIMATES FOR SUBORDINATE BROWNIAN MOTIONS: STABLE AND BEYOND [J].
Kim, Panki ;
Mimica, Ante .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (08) :4383-4422