Levy random walks on multiplex networks

被引:27
作者
Guo, Quantong [1 ,2 ,3 ]
Cozzo, Emanuele [3 ]
Zheng, Zhiming [1 ,2 ,4 ]
Moreno, Yamir [3 ,5 ,6 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
[2] Minist Educ, Key Lab Math Informat Behav Semant LMIB, Beijing, Peoples R China
[3] Univ Zaragoza, Inst Biocomputat & Phys Complex Syst BIFI, Zaragoza 50018, Spain
[4] Peking Univ, Sch Math Sci, Beijing 100191, Peoples R China
[5] Univ Zaragoza, Dept Theoret Phys, E-50009 Zaragoza, Spain
[6] Inst Sci Interchange, Complex Networks & Syst Lagrange Lab, Turin, Italy
基金
美国国家科学基金会;
关键词
D O I
10.1038/srep37641
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Random walks constitute a fundamental mechanism for many dynamics taking place on complex networks. Besides, as a more realistic description of our society, multiplex networks have been receiving a growing interest, as well as the dynamical processes that occur on top of them. Here, inspired by one specific model of random walks that seems to be ubiquitous across many scientific fields, the Levy flight, we study a new navigation strategy on top of multiplex networks. Capitalizing on spectral graph and stochastic matrix theories, we derive analytical expressions for the mean first passage time and the average time to reach a node on these networks. Moreover, we also explore the efficiency of Levy random walks, which we found to be very different as compared to the single layer scenario, accounting for the structure and dynamics inherent to the multiplex network. Finally, by comparing with some other important random walk processes defined on multiplex networks, we find that in some region of the parameters, a Levy random walk is the most efficient strategy. Our results give us a deeper understanding of Levy random walks and show the importance of considering the topological structure of multiplex networks when trying to find efficient navigation strategies.
引用
收藏
页数:11
相关论文
共 47 条
[1]   Explosive Percolation in Random Networks [J].
Achlioptas, Dimitris ;
D'Souza, Raissa M. ;
Spencer, Joel .
SCIENCE, 2009, 323 (5920) :1453-1555
[2]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[3]  
[Anonymous], 2012, NAT PHYS
[4]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[5]   Levy flights in human behavior and cognition [J].
Baronchelli, Andrea ;
Radicchi, Filippo .
CHAOS SOLITONS & FRACTALS, 2013, 56 :101-105
[6]   Structural measures for multiplex networks [J].
Battiston, Federico ;
Nicosia, Vincenzo ;
Latora, Vito .
PHYSICAL REVIEW E, 2014, 89 (03)
[7]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[8]   The structure and dynamics of multilayer networks [J].
Boccaletti, S. ;
Bianconi, G. ;
Criado, R. ;
del Genio, C. I. ;
Gomez-Gardenes, J. ;
Romance, M. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zanin, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01) :1-122
[9]  
Chung F., 1992, Spectral Graph Theory
[10]   Structure of triadic relations in multiplex networks [J].
Cozzo, Emanuele ;
Kivelae, Mikko ;
De Domenico, Manlio ;
Sole-Ribalta, Albert ;
Arenas, Alex ;
Gomez, Sergio ;
Porter, Mason A. ;
Moreno, Yamir .
NEW JOURNAL OF PHYSICS, 2015, 17