A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz

被引:57
作者
Huang, S. -W. [1 ,2 ]
Yang, J. [1 ,2 ]
Lim, J. [1 ]
Zhou, H. [3 ]
Yu, M. [4 ]
Kwong, D. -L. [4 ]
Wong, C. W. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Mesoscop Opt & Quantum Elect Lab, Los Angeles, CA 90095 USA
[2] Columbia Univ, Opt Nanostruct Lab, Ctr Integrated Sci & Engn, Solid State Sci & Engn & Mech Engn, New York, NY USA
[3] Univ Elect Sci & Technol China, Chengdu 610054, Sichuan, Peoples R China
[4] Inst Microelect, Singapore, Singapore
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
GENERATION; COMBS; PRECISION;
D O I
10.1038/srep13355
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Laser frequency combs are coherent light sources that simultaneously provide pristine frequency spacings for precision metrology and the fundamental basis for ultrafast and attosecond sciences. Recently, nonlinear parametric conversion in high-Q microresonators has been suggested as an alternative platform for optical frequency combs, though almost all in 100 GHz frequencies or more. Here we report a low-phase-noise on-chip Kerr frequency comb with mode spacing compatible with high-speed silicon optoelectronics. The waveguide cross-section of the silicon nitride spiral resonator is designed to possess small and flattened group velocity dispersion, so that the Kerr frequency comb contains a record-high number of 3,600 phase-locked comb lines. We study the single-sideband phase noise as well as the long-term frequency stability and report the lowest phase noise floor achieved to date with -130 dBc/Hz at 1 MHz offset for the 18 GHz Kerr comb oscillator, along with feedback stabilization to achieve frequency Allan deviations of 7 x 10(-11) in 1 s. The reported system is a promising compact platform for achieving self-referenced Kerr frequency combs and also for high-capacity coherent communication architectures.
引用
收藏
页数:7
相关论文
共 31 条
  • [1] Spectrum and Dynamics of Optical Frequency Combs Generated with Monolithic Whispering Gallery Mode Resonators
    Chembo, Yanne K.
    Strekalov, Dmitry V.
    Yu, Nan
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (10)
  • [2] Direct frequency comb spectroscopy in the extreme ultraviolet
    Cingoez, Arman
    Yost, Dylan C.
    Allison, Thomas K.
    Ruehl, Axel
    Fermann, Martin E.
    Hartl, Ingmar
    Ye, Jun
    [J]. NATURE, 2012, 482 (7383) : 68 - 71
  • [3] Self-Injection Locking and Phase-Locked States in Microresonator-Based Optical Frequency Combs
    Del'Haye, Pascal
    Beha, Katja
    Papp, Scott B.
    Diddams, Scott A.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (04)
  • [4] Spectral line-by-line pulse shaping of on-chip microresonator frequency combs
    Ferdous, Fahmida
    Miao, Houxun
    Leaird, Daniel E.
    Srinivasan, Kartik
    Wang, Jian
    Chen, Lei
    Varghese, Leo Tom
    Weiner, Andrew M.
    [J]. NATURE PHOTONICS, 2011, 5 (12) : 770 - 776
  • [5] Fortier TM, 2011, NAT PHOTONICS, V5, P425, DOI [10.1038/nphoton.2011.121, 10.1038/NPHOTON.2011.121]
  • [6] Impact of cavity spectrum on span in microresonator frequency combs
    Grudinin, Ivan S.
    Baumgartel, Lukas
    Yu, Nan
    [J]. OPTICS EXPRESS, 2013, 21 (22): : 26929 - 26935
  • [7] Generation of optical frequency combs with a CaF2 resonator
    Grudinin, Ivan S.
    Yu, Nan
    Maleki, Lute
    [J]. OPTICS LETTERS, 2009, 34 (07) : 878 - 880
  • [8] Mode Spectrum and Temporal Soliton Formation in Optical Microresonators
    Herr, T.
    Brasch, V.
    Jost, J. D.
    Mirgorodskiy, I.
    Lihachev, G.
    Gorodetsky, M. L.
    Kippenberg, T. J.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (12)
  • [9] Herr T, 2014, NAT PHOTONICS, V8, P145, DOI [10.1038/nphoton.2013.343, 10.1038/NPHOTON.2013.343]
  • [10] Herr T, 2012, NAT PHOTONICS, V6, P480, DOI [10.1038/NPHOTON.2012.127, 10.1038/nphoton.2012.127]