Electrical Detection of Spin Precession in Freely Suspended Graphene Spin Valves on Cross-Linked Poly(methyl methacrylate)

被引:34
作者
Neumann, Ingmar [1 ,2 ]
Van de Vondel, Joris [2 ,3 ]
Bridoux, German [2 ]
Costache, Marius V. [2 ]
Alzina, Francesc [2 ]
Sotomayor Torres, Clivia M. [1 ,2 ,4 ]
Valenzuela, Sergio O. [1 ,2 ,4 ]
机构
[1] Univ Autonoma Barcelona, E-08193 Bellaterra, Spain
[2] Catalan Inst Nanotechnol ICN, E-08193 Bellaterra, Spain
[3] Katholieke Univ Leuven, Inst Nanoscale Phys & Chem INPAC, B-3001 Louvain, Belgium
[4] ICREA, E-08010 Barcelona, Spain
关键词
nonlocal spin devices; carrier mobility; spin precession; spintronics; suspended graphene; ETCH RATES; TRANSPORT;
D O I
10.1002/smll.201201194
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Spin injection and detection is achieved in freely suspended graphene using cobalt electrodes and a nonlocal spin-valve geometry. The devices are fabricated with a single electron-beam-resist poly(methyl methacrylate) process that minimizes both the fabrication steps and the number of (aggressive) chemicals used, greatly reducing contamination and increasing the yield of high-quality, mechanically stable devices. As-grown devices can present mobilities exceeding 104 cm2 V-1 s-1 at room temperature and, because the contacts deposited on graphene are only exposed to acetone and isopropanol, the method is compatible with almost any contacting material. Spin accumulation and spin precession are studied in these nonlocal spin valves. Fitting of Hanle spin precession data in bilayer and multilayer graphene yields a spin relaxation time of similar to 125-250 ps and a spin diffusion length of 1.7-1.9 mu m at room temperature.
引用
收藏
页码:156 / 160
页数:5
相关论文
共 35 条
[1]  
Barreiro A., 2012, 12013131 ARXIV
[2]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[3]   Spin accumulation probed in multiterminal lateral all-metallic devices [J].
Costache, M. V. ;
Zaffalon, M. ;
van Wees, B. J. .
PHYSICAL REVIEW B, 2006, 74 (01)
[4]   Approaching ballistic transport in suspended graphene [J].
Du, Xu ;
Skachko, Ivan ;
Barker, Anthony ;
Andrei, Eva Y. .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :491-495
[5]   Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics [J].
Eda, Goki ;
Chhowalla, Manish .
ADVANCED MATERIALS, 2010, 22 (22) :2392-2415
[6]  
Eichler A, 2011, NAT NANOTECHNOL, V6, P339, DOI [10.1038/NNANO.2011.71, 10.1038/nnano.2011.71]
[7]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   Spin Transport in High-Quality Suspended Graphene Devices [J].
Guimaraes, Marcos H. D. ;
Veligura, A. ;
Zomer, P. J. ;
Maassen, T. ;
Vera-Marun, I. J. ;
Tombros, N. ;
van Arees, B. J. .
NANO LETTERS, 2012, 12 (07) :3512-3517
[10]   Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering [J].
Guinea, F. ;
Katsnelson, M. I. ;
Geim, A. K. .
NATURE PHYSICS, 2010, 6 (01) :30-33