STATIONARY DISTRIBUTION OF STOCHASTIC SIRS EPIDEMIC MODEL WITH STANDARD INCIDENCE

被引:6
作者
Zhao, Yanan [1 ,2 ]
Lin, Yuguo [3 ]
Jiang, Daqing [4 ,5 ]
Mao, Xuerong [6 ]
Li, Yong [1 ,7 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Jilin, Peoples R China
[2] Jilin Univ, Coll Sci, Changchun 130022, Jilin, Peoples R China
[3] Beihua Univ, Coll Math, Jilin 132013, Jilin, Peoples R China
[4] China Univ Petr East China, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[5] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[6] Univ Strathclyde, Dept Math & Stat, Glasgow G1 1XH, Lanark, Scotland
[7] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2016年 / 21卷 / 07期
关键词
Stationary distribution; diffusion process; Markov semigroups; asymptotic stability; LONG-TIME BEHAVIOR; PERTURBED SIR; POPULATION; EXTINCTION; DYNAMICS; THRESHOLD;
D O I
10.3934/dcdsb.2016051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study stochastic versions of a deterministic SIRS(Susceptible, Infective, Recovered, Susceptible) epidemic model with standard incidence. We study the existence of a stationary distribution of stochastic system by the theory of integral Markov semigroup. We prove the distribution densities of the solutions can converge to an invariant density in L-1. This shows the system is ergodic. The presented results are demonstrated by numerical simulations.
引用
收藏
页码:2363 / 2378
页数:16
相关论文
共 30 条
[1]  
Aida S., 1972, P 6 BERK S MATH STAT
[2]  
ANDERSON R M, 1991
[3]  
Anderson R.M., 1982, Population biology of infectious diseases
[4]   POPULATION BIOLOGY OF INFECTIOUS-DISEASES .1. [J].
ANDERSON, RM ;
MAY, RM .
NATURE, 1979, 280 (5721) :361-367
[5]  
Bell DR, 2006, The Malliavin calculus
[6]  
BENAROUS G, 1991, PROBAB THEORY REL, V90, P377
[7]   ANALYSIS OF A DISEASE TRANSMISSION MODEL IN A POPULATION WITH VARYING SIZE [J].
BUSENBERG, S ;
VANDENDRIESSCHE, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1990, 28 (03) :257-270
[8]   A stochastic model of AIDS and condom use [J].
Dalal, Nirav ;
Greenhalgh, David ;
Mao, Xuerong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :36-53
[9]   A STOCHASTIC DIFFERENTIAL EQUATION SIS EPIDEMIC MODEL [J].
Gray, A. ;
Greenhalgh, D. ;
Hu, L. ;
Mao, X. ;
Pan, J. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (03) :876-902
[10]   The mathematics of infectious diseases [J].
Hethcote, HW .
SIAM REVIEW, 2000, 42 (04) :599-653