Estimation of surface shortwave radiation components under all sky conditions: Modeling and sensitivity analysis

被引:68
作者
Chen, Ling [1 ]
Yan, Guangjian [1 ]
Wang, Tianxing [2 ]
Ren, Huazhong [1 ]
Calbo, Josep [3 ]
Zhao, Jing [1 ]
McKenzie, Richard [4 ]
机构
[1] Beijing Normal Univ, Sch Geog, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
[2] Chinese Acad Sci, Inst Remote Sensing Applicat, Beijing 100101, Peoples R China
[3] Univ Girona, Dept Fis, Girona, Spain
[4] Natl Inst Water & Atmospher Res, Lauder 9352, Central Otago, New Zealand
基金
中国国家自然科学基金;
关键词
MODTRAN-CF; Hemispherical effective cloud fraction; Global sensitivity analysis; PHOTOSYNTHETICALLY ACTIVE RADIATION; DISCRETE-ORDINATE-METHOD; SIMPLE PHYSICAL MODEL; SOLAR-RADIATION; INDEPENDENT PIXEL; GLOBAL IRRADIANCE; CLIMATE RESEARCH; MODIS DATA; SATELLITE; CLOUDS;
D O I
10.1016/j.rse.2012.04.006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Clouds are the most important modulator of the amount of solar energy absorbed by the earth-atmosphere system. Traditional one-dimensional (1D) plane-parallel atmospheric radiative transfer models which use the independent pixel approximation (IPA) can only consider two extreme conditions, i.e., either cloud-free or overcast cases. In this paper, two cloud fraction related factors (hemispherical effective cloud fraction and regional cloud fraction) are calculated and incorporated into MODTRAN 4 (one of the most popular radiative transfer packages) to simulate the surface shortwave radiation components and the top-of-atmosphere (TOA) radiance for all possible solar-cloud-viewing geometries. The accuracy of this modified solar radiative transfer model (named as MODTRAN-CF) is consistent with its prototype (MODTRAN 4) which has been widely used and validated in radiative transfer modeling. Some field measurements are used to validate the superiority of MODTRAN-CF. For further understanding and simplifying of this physical model, a global sensitivity analysis (GSA) method is employed to analyze the effect of model parameters on each surface shortwave radiation component. Five parameters including solar zenith angle, surface albedo, hemispherical effective cloud fraction, ground altitude and atmospheric visibility show non-negligible impacts on almost all surface shortwave fluxes, which indicates that these five parameters should be carefully considered in the future modeling of the surface shortwave radiation fluxes. Two cloud optical thickness related parameters (cloud extinction coefficient and cloud thickness) exhibit obvious importance only under cloudy illumination condition especially with optically thin clouds. These findings on the improved model will enhance our knowledge on how to accurately model the surface shortwave radiation fluxes under all sky conditions. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:457 / 469
页数:13
相关论文
共 72 条
[51]  
2
[52]  
PINKER RT, 1985, J CLIM APPL METEOROL, V24, P389, DOI 10.1175/1520-0450(1985)024<0389:MSSRMF>2.0.CO
[53]  
2
[54]  
PINKER RT, 1992, J APPL METEOROL, V31, P194, DOI 10.1175/1520-0450(1992)031<0194:MSSIFS>2.0.CO
[55]  
2
[56]   Sensitivity analysis for a complex crop model applied to Durum wheat in the Mediterranean [J].
Richter, G. M. ;
Acutis, M. ;
Trevisiol, P. ;
Latiri, K. ;
Confalonieri, R. .
EUROPEAN JOURNAL OF AGRONOMY, 2010, 32 (02) :127-136
[57]   Validation of the MODIS Bidirectional Reflectance Distribution Function and Albedo retrievals using combined observations from the Aqua and Terra platforms [J].
Salomon, Jonathan G. ;
Schaaf, Crystal B. ;
Strahler, Alan H. ;
Gao, Feng ;
Jin, Yufang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (06) :1555-1565
[58]   Sensitivity analysis as an ingredient of modeling [J].
Saltelli, A ;
Tarantola, S ;
Campolongo, F .
STATISTICAL SCIENCE, 2000, 15 (04) :377-395
[59]   Enhanced solar global irradiance during cloudy sky conditions [J].
Schade, Nils H. ;
Macke, Andreas ;
Sandmann, H. ;
Stick, C. .
METEOROLOGISCHE ZEITSCHRIFT, 2007, 16 (03) :295-303
[60]  
SEGAL M, 1992, J APPL METEOROL, V31, P217, DOI 10.1175/1520-0450(1992)031<0217:TIODCR>2.0.CO