Pattern discovery: A progressive visual analytic design to support categorical data analysis

被引:6
|
作者
Zhao, Hanqing [1 ]
Zhang, Huijun [2 ]
Liu, Yan [1 ]
Zhang, Yongzhen [3 ]
Zhang, Xiaolong [1 ,4 ]
机构
[1] Penn State Univ, University Pk, PA 16802 USA
[2] Univ Shanxi, Taiyuan Univ Technol & Commun, Taiyuan, Shanxi, Peoples R China
[3] Shanxi Tumor Hosp, Taiyuan, Shanxi, Peoples R China
[4] Taiyuan Univ Technol, Taiyuan, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Progressive; Visual analytics; Categorical data analysis; UNCERTAINTY; VISUALIZATION;
D O I
10.1016/j.jvlc.2017.05.004
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
When using data-mining tools to analyze big data, users often need tools to support the understanding of individual data attributes and control the analysis progress. This requires the integration of data-mining algorithms with interactive tools to manipulate data and analytical process. This is where visual analytics can help. More than simple visualization of a dataset or some computation results, visual analytics provides users an environment to iteratively explore different inputs or parameters and see the corresponding results. In this research, we explore a design of progressive visual analytics to support the analysis of categorical data with a data-mining algorithm, Apriori. Our study focuses on executing data mining techniques step-by-step and showing intermediate result at every stage to facilitate sense-making. Our design, called Pattern Discovery Tool, targets for a medical dataset. Starting with visualization of data properties and immediate feedback of users' inputs or adjustments, Pattern Discovery Tool could help users detect interesting patterns and factors effectively and efficiently. Afterward, further analyses such as statistical methods could be conducted to test those possible theories. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:42 / 49
页数:8
相关论文
共 25 条
  • [1] Visual Correlation Analysis of Numerical and Categorical Data on the Correlation Map
    Zhang, Zhiyuan
    McDonnell, Kevin T.
    Zadok, Erez
    Mueller, Klaus
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2015, 21 (02) : 289 - 303
  • [2] Visual Pattern Discovery in Timed Event Data
    Schaefer, Matthias
    Wanner, Franz
    Mansmann, Florian
    Scheible, Christian
    Stennett, Verity
    Hasselrot, Anders T.
    Keim, Daniel A.
    VISUALIZATION AND DATA ANALYSIS 2011, 2011, 7868
  • [3] Scalability in Visualization and Visual Analytics with Progressive Data Analysis
    Fekete, Jean-Daniel
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED VISUAL INTERFACES, AVI 2024, 2024,
  • [4] CrystalBall: A Visual Analytic System for Future Event Discovery and Analysis from Social Media Data
    Cho, Isaac
    Wesslen, Ryan
    Volkova, Svitlana
    Ribarsky, William
    Dou, Wenwen
    2017 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2017, : 25 - 35
  • [5] Discovery and Visual Analysis of Linked Data for Humans
    Sabol, Vedran
    Tschinkel, Gerwald
    Veas, Eduardo
    Hoefler, Patrick
    Mutlu, Belgin
    Granitzer, Michael
    SEMANTIC WEB - ISWC 2014, PT I, 2014, 8796 : 309 - 324
  • [6] Facilitating the Analysis of Immunological Data with Visual Analytic Techniques
    Shih, David C.
    Ho, Kevin C.
    Melnick, Kyle M.
    Rensink, Ronald A.
    Kollmann, Tobias R.
    Fortuno, Edgardo S.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2011, (47):
  • [7] Interactive visual analytics tool for multidimensional quantitative and categorical data analysis
    Shahid, Muhammad Laiq Ur Rahman
    Molchanov, Vladimir
    Mir, Junaid
    Shaukat, Furqan
    Linsen, Lars
    INFORMATION VISUALIZATION, 2020, 19 (03) : 234 - 246
  • [8] Visual analytics of set data for knowledge discovery and member selection support
    Watanabe, Ryuji
    Ishibashi, Hideaki
    Furukawa, Tetsuo
    DECISION SUPPORT SYSTEMS, 2022, 152
  • [9] Model-Driven Design for the Visual Analysis of Heterogeneous Data
    Streit, Marc
    Schulz, Hans-Joerg
    Lex, Alexander
    Schmalstieg, Dieter
    Schumann, Heidrun
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012, 18 (06) : 998 - 1010
  • [10] Analysis of categorical incident data and design for safety interventions using axiomatic design framework
    Verma, Abhishek
    Maiti, J.
    Boustras, G.
    SAFETY SCIENCE, 2020, 123