Raman spectroscopy of ZnS nanostructures

被引:88
作者
Kim, J. H. [1 ]
Rho, H. [1 ]
Kim, J. [2 ]
Choi, Y-J. [3 ]
Park, J-G. [3 ]
机构
[1] Chonbuk Natl Univ, Dept Phys, Res Inst Phys & Chem, Jeonju 561756, South Korea
[2] Univ Incheon, Dept Phys, Inchon 406772, South Korea
[3] Korea Inst Sci & Technol, Nanophoton Res Ctr, Seoul 136791, South Korea
基金
新加坡国家研究基金会;
关键词
Raman scattering; ZnS; nanowire; nanocomb; nanobelt; WURTZITE; NANOBELTS; NANOWIRES;
D O I
10.1002/jrs.3116
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
We report Raman scattering results of wurtzite ZnS nanowires, nanocombs, and nanobelts. The Raman spectrum obtained from ZnS nanowires exhibits first-order phonon modes at 272, 284, and 350?cm-1, corresponding to A1/E1 transverse optical, E2 transverse optical, and A1/E1 longitudinal optical phonons, respectively. Several multiphonon modes are also observed. The longitudinal optical phonon mode varies in wavenumber for nanocombs and nanobelts, indicating that the residual strain varies during the morphological change from ZnS nanowires to nanocombs and ultimately to nanobelts. Interestingly, a surface optical (SO) phonon mode varies in wavenumber depending on the shape and surface roughness of the ZnS nanostructures. The surface modulation wavelengths of the ZnS nanowires, nanocombs, and nanobelts are estimated using the SO phonon dispersion relations and the observed SO phonon wavenumbers. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:906 / 910
页数:5
相关论文
共 24 条
[1]   FIRST-ORDER RAMAN EFFECT IN WURTZITE-TYPE CRYSTALS [J].
ARGUELLO, CA ;
ROUSSEAU, DL ;
PORTO, SPS .
PHYSICAL REVIEW, 1969, 181 (03) :1351-&
[2]   Surface optical Raman modes in GaN nanoribbons [J].
Bhattacharya, Santanu ;
Datta, Anindya ;
Dhara, Sandip ;
Chakravorty, Dipankar .
JOURNAL OF RAMAN SPECTROSCOPY, 2011, 42 (03) :429-433
[3]   RAMAN EFFECT IN WURTZITE- AND ZINC-BLENDE-TYPE ZNS SINGLE CRYSTALS [J].
BRAFMAN, O ;
MITRA, SS .
PHYSICAL REVIEW, 1968, 171 (03) :931-&
[4]   ZnS Branched Architectures as Optoelectronic Devices and Field Emitters [J].
Chen, Zhi-Gang ;
Cheng, Lina ;
Xu, Hong-Yi ;
Liu, Ji-Zi ;
Zou, Jin ;
Sekiguchi, Takashi ;
Lu, Gao Qing ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2010, 22 (21) :2376-2380
[5]   Raman scattering study of zinc blende and wurtzite ZnS [J].
Cheng, Y. C. ;
Jin, C. Q. ;
Gao, F. ;
Wu, X. L. ;
Zhong, W. ;
Li, S. H. ;
Chu, Paul K. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (12)
[6]   Morphological Evolution of CdS Nanowires to Nanosheets [J].
Choi, Young-Jin ;
Choi, Kyoung Jin ;
Kim, Dong-Wan ;
Park, Jae-Gwan .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (07) :4487-4491
[7]   Self-catalysis and phase transformation in the formation of CdSe nanosaws [J].
Ding, Y ;
Ma, C ;
Wang, ZL .
ADVANCED MATERIALS, 2004, 16 (19) :1740-+
[8]   Single-Crystalline ZnS Nanobelts as Ultraviolet-Light Sensors [J].
Fang, Xiaosheng ;
Bando, Yoshio ;
Liao, Meiyong ;
Gautam, Ujjal K. ;
Zhi, Chunyi ;
Dierre, Benjamin ;
Liu, Baodan ;
Zhai, Tianyou ;
Sekiguchi, Takashi ;
Koide, Yasuo ;
Golberg, Dmitri .
ADVANCED MATERIALS, 2009, 21 (20) :2034-2039
[9]   Two-Dimensional Single Crystal CdS Nanosheets: Synthesis and Properties [J].
Gao, Tao ;
Wang, Taihong .
CRYSTAL GROWTH & DESIGN, 2010, 10 (11) :4995-5000
[10]   Surface optical phonions in gallium phosphide nanowires [J].
Gupta, R ;
Xiong, Q ;
Mahan, GD ;
Eklund, PC .
NANO LETTERS, 2003, 3 (12) :1745-1750