Steady-state tunable entanglement thermal machine using quantum dots

被引:3
作者
Das, Anuranan [1 ]
Khan, Adil Anwar [1 ]
Mishra, Sattwik Deb [1 ,5 ]
Solanki, Parvinder [2 ]
De, Bitan [3 ]
Muralidharan, Bhaskaran [1 ]
Vinjanampathy, Sai [2 ,4 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Mumbai 400076, Maharashtra, India
[2] Indian Inst Technol, Dept Phys, Mumbai 400076, Maharashtra, India
[3] Jagiellonian Univ Krakow, Inst Theoret Phys, Lojasiewicza 11, PL-30348 Krakow, Poland
[4] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[5] Stanford Univ, EL Ginzton Lab, Stanford, CA 94305 USA
关键词
steady-state; tunable; quantum; dots; entanglement thermal machine; COULOMB-BLOCKADE OSCILLATIONS; TRANSPORT; CONDUCTANCE; STATISTICS; SPIN;
D O I
10.1088/2058-9565/ac8fb0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a solid state thermal machine based on quantum dots to generate steady-state entanglement between distant spins. Unlike previous approaches our system can be controlled by experimentally feasible steady state currents manipulated by dc voltages. By analyzing the Liouvillian eigenspectrum as a function of the control parameters, we show that our device operates over a large voltage region. As an extension, the proposed device also works as an entanglement thermal machine under a temperature gradient that can even give rise to entanglement at zero voltage bias. Finally, we highlight a post-selection scheme based on currently feasible non-demolition measurement techniques that can generate perfect Bell-pairs from the steady state output of our thermal machine.
引用
收藏
页数:11
相关论文
共 105 条
[1]   Entanglement generation in quantum thermal machines [J].
Aguilar, Milton ;
Freitas, Nahuel ;
Paz, Juan Pablo .
PHYSICAL REVIEW A, 2020, 102 (06)
[2]   Quantum effects in Coulomb blockade [J].
Aleiner, IL ;
Brouwer, PW ;
Glazman, LI .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 358 (5-6) :309-440
[3]  
Alicki R., 2019, THERMODYNAMICS QUANT, P1, DOI [10.1007/978-3-319-99046-0_1, DOI 10.1007/978-3-319-99046-0_1]
[4]   Ultimate On-Chip Quantum Amplifier [J].
Astafiev, O. V. ;
Abdumalikov, A. A., Jr. ;
Zagoskin, A. M. ;
Pashkin, Yu. A. ;
Nakamura, Y. ;
Tsai, J. S. .
PHYSICAL REVIEW LETTERS, 2010, 104 (18)
[5]   THEORY OF COULOMB-BLOCKADE OSCILLATIONS IN THE CONDUCTANCE OF A QUANTUM DOT [J].
BEENAKKER, CWJ .
PHYSICAL REVIEW B, 1991, 44 (04) :1646-1656
[6]  
Blundell S., 2003, AM J PHYS, V71, P94, DOI [10.1119/1.1522704, DOI 10.1119/1.1522704]
[7]   A double quantum dot spin valve [J].
Bordoloi, Arunav ;
Zannier, Valentina ;
Sorba, Lucia ;
Schonenberger, Christian ;
Baumgartner, Andreas .
COMMUNICATIONS PHYSICS, 2020, 3 (01)
[8]   Resonant microwave-mediated interactions between distant electron spins [J].
Borjans, F. ;
Croot, X. G. ;
Mi, X. ;
Gullans, M. J. ;
Petta, J. R. .
NATURE, 2020, 577 (7789) :195-+
[9]   A quantum heat engine driven by atomic collisions [J].
Bouton, Quentin ;
Nettersheim, Jens ;
Burgardt, Sabrina ;
Adam, Daniel ;
Lutz, Eric ;
Widera, Artur .
NATURE COMMUNICATIONS, 2021, 12 (01)
[10]   Rate equations for Coulomb blockade with ferromagnetic leads [J].
Braig, S ;
Brouwer, PW .
PHYSICAL REVIEW B, 2005, 71 (19)