Interpolatory HDG Method for Parabolic Semilinear PDEs

被引:19
作者
Cockburn, Bernardo [1 ]
Singler, John R. [2 ]
Zhang, Yangwen [2 ,3 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
[3] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
Hybridizable discontinuous Galerkin method; Interpolatory method; Newton iteration; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT; SUPERCONVERGENCE; CONSTRUCTION; COEFFICIENTS; EQUATIONS;
D O I
10.1007/s10915-019-00911-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose the interpolatory hybridizable discontinuous Galerkin (Interpolatory HDG) method for a class of scalar parabolic semilinear PDEs. The Interpolatory HDG method uses an interpolation procedure to efficiently and accurately approximate the nonlinear term. This procedure avoids the numerical quadrature typically required for the assembly of the global matrix at each iteration in each time step, which is a computationally costly component of the standard HDG method for nonlinear PDEs. Furthermore, the Interpolatory HDG interpolation procedure yields simple explicit expressions for the nonlinear term and Jacobian matrix, which leads to a simple unified implementation for a variety of nonlinear PDEs. For a globally-Lipschitz nonlinearity, we prove that the Interpolatory HDG method does not result in a reduction of the order of convergence. We display 2D and 3D numerical experiments to demonstrate the performance of the method.
引用
收藏
页码:1777 / 1800
页数:24
相关论文
共 40 条
[1]  
[Anonymous], 2008, TEXTS APPL MATH
[2]   ANALYSIS OF A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE STEADY-STATE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
Cesmelioglu, Aycil ;
Cockburn, Bernardo ;
Qiu, Weifeng .
MATHEMATICS OF COMPUTATION, 2017, 86 (306) :1643-1670
[3]   UNIFORM-IN-TIME SUPERCONVERGENCE OF HDG METHODS FOR THE HEAT EQUATION [J].
Chabaud, Brandon ;
Cockburn, Bernardo .
MATHEMATICS OF COMPUTATION, 2012, 81 (277) :107-129
[4]   ERROR-ESTIMATES OF OPTIMAL ORDER FOR FINITE-ELEMENT METHODS WITH INTERPOLATED COEFFICIENTS FOR THE NONLINEAR HEAT-EQUATION [J].
CHEN, CM ;
LARSSON, S ;
ZHANG, NY .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1989, 9 (04) :507-524
[5]  
Chen Z., 1991, MAT, V10, P137
[6]   PRODUCT APPROXIMATION FOR NON-LINEAR PROBLEMS IN THE FINITE-ELEMENT METHOD [J].
CHRISTIE, I ;
GRIFFITHS, DF ;
MITCHELL, AR ;
SANZSERNA, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1981, 1 (03) :253-266
[7]   Static Condensation, Hybridization, and the Devising of the HDG Methods [J].
Cockburn, Bernardo .
BUILDING BRIDGES: CONNECTIONS AND CHALLENGES IN MODERN APPROACHES TO NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS, 2016, 114 :129-177
[8]   SUPERCONVERGENCE BY M-DECOMPOSITIONS. PART I: GENERAL THEORY FOR HDG METHODS FOR DIFFUSION [J].
Cockburn, Bernardo ;
Fu, Guosheng ;
Sayas, Francisco Javier .
MATHEMATICS OF COMPUTATION, 2017, 86 (306) :1609-1641
[9]   SUPERCONVERGENCE BY M-DECOMPOSITIONS. PART III: CONSTRUCTION OF THREE-DIMENSIONAL FINITE ELEMENTS [J].
Cockburn, Bernardo ;
Fu, Guosheng .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (01) :365-398
[10]   SUPERCONVERGENCE BY M-DECOMPOSITIONS. PART II: CONSTRUCTION OF TWO-DIMENSIONAL FINITE ELEMENTS [J].
Cockburn, Bernardo ;
Fu, Guosheng .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (01) :165-186