The general zeroth-order Randic index of maximal outerplanar graphs and trees with k maximum degree vertices

被引:6
|
作者
Su, Guifu [1 ]
Meng, Minghui [1 ]
Cui, Lihong [1 ]
Chen, Zhibing [2 ]
Xu, Lan [3 ]
机构
[1] Beijing Univ Chem Technol, Sch Sci, Beijing 100029, Peoples R China
[2] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Guangdong, Peoples R China
[3] Changji Univ, Dept Math, Changji 831100, Peoples R China
来源
SCIENCEASIA | 2017年 / 43卷 / 06期
关键词
graph invariant; extremal graphs; 1ST; 3; SMALLEST; EDGE-CONNECTED GRAPHS; ZAGREB INDEXES; TOPOLOGICAL INDEXES; NUMBER; M)-GRAPHS; MINIMUM; VALUES; (N;
D O I
10.2306/scienceasia1513-1874.2017.43.387
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For a graph, the general zeroth-order Randic index R-alpha(0) is defined as the sum of the alpha th power of the vertex degrees (alpha not equal 0, alpha not equal 1). Let H-n be the class of all maximal outerplanar graphs on n vertices, and T-n,T-k be the class of trees with n vertices of which k vertices have the maximum degree. We first present a lower bound (respectively, upper bound) for the general zeroth-order Randic index of graphs in H-n (respectively, T-n,T-k) when alpha is an element of(-infinity, 0) boolean OR (1, + infinity) (respectively, alpha is an element of (2, + infinity)), and characterize the extremal graphs. Then we determine graphs of the class T-n,T-k with maximal and minimal general zeroth-order Randic index when alpha is an element of(-infinity, 0) boolean OR (1, + infinity), respectively.
引用
收藏
页码:387 / 393
页数:7
相关论文
共 28 条
  • [1] Graphs with fixed number of pendent vertices and minimal Zeroth-order general Randic index
    Su, Guifu
    Tu, Jianhua
    Das, Kinkar Ch.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 705 - 710
  • [2] SOME EXTREMAL GRAPHS WITH RESPECT TO THE ZEROTH-ORDER GENERAL RANDIC INDEX
    Su, Guifu
    Yan, Jingru
    Chen, Zhibing
    Rao, Gang
    UTILITAS MATHEMATICA, 2020, 114 : 73 - 98
  • [3] Sharp bounds of the zeroth-order general Randic index of bicyclic graphs with given pendent vertices
    Pan, Xiang-Feng
    Lv, Ning-Ning
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (04) : 240 - 245
  • [4] Zeroth-order General Randic Index of Trees
    Vetrik, Tomas
    Balachandran, Selvaraj
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [5] Zeroth-order general Randic index of cactus graphs
    Ahmed, Hassan
    Bhatti, Akhlaq Ahmad
    Ali, Akbar
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2019, 16 (02) : 182 - 189
  • [6] THE ZEROTH-ORDER GENERAL RANDIC INDEX OF GRAPHS WITH A GIVEN CLIQUE NUMBER
    Du, Jianwei
    Shao, Yanling
    Sun, Xiaoling
    KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (03): : 405 - 419
  • [7] On the Bounds of Zeroth-Order General Randic Index
    Matejic, Marjan
    Altindag, Erife Burcu Bozkurt
    Milovanovic, Emina
    Milovanovic, Igor
    FILOMAT, 2022, 36 (19) : 6443 - 6456
  • [8] More on "Connected (n, m)-graphs with minimum and maximum zeroth-order general Randic index"
    Pavlovic, Ljiljana
    Lazic, Mirjana
    Aleksic, Tatjana
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (13) : 2938 - 2944
  • [9] On the zeroth-order general Randic index of cacti
    Lin, Liang
    Lu, Mei
    ARS COMBINATORIA, 2012, 106 : 381 - 393
  • [10] Some Bounds on Zeroth-Order General Randic Index
    Jamil, Muhammad Kamran
    Tomescu, Ioan
    Imran, Muhammad
    Javed, Aisha
    MATHEMATICS, 2020, 8 (01)