Klein-Gordon Equation with Superintegrable Systems: Kepler-Coulomb, Harmonic Oscillator, and Hyperboloid

被引:2
作者
Mohammadi, V. [1 ]
Aghaei, S. [1 ]
Chenaghlou, A. [1 ]
机构
[1] Sahand Univ Technol, Dept Phys, Fac Sci, Tabriz, Iran
关键词
QUADRATIC ALGEBRA APPROACH; DIRAC-EQUATION; EQUAL SCALAR; BOUND-STATES; VECTOR; SYMMETRY; SUPERSYMMETRY; SPACES;
D O I
10.1155/2015/701042
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the two-dimensional Klein-Gordon equation with spin symmetry in the presence of the superintegrable potentials. On Euclidean space, the SO(3) group generators of the Schrodinger-like equation with the Kepler-Coulomb potential are represented. In addition, by Levi-Civita transformation, the Schrodinger-like equation with harmonic oscillator which is dual to the Kepler-Coulomb potential and the SU(2) group generators of associated system are studied. Also, we construct the quadratic algebra of the hyperboloid superintegrable system. Then, we obtain the corresponding Casimir operators and the structure functions and the relativistic energy spectra of the corresponding quasi-Hamiltonians by using the quadratic algebra approach.
引用
收藏
页数:9
相关论文
共 38 条
[1]   Quadratic Algebra Approach to the Dirac Equation with Spin and Pseudospin Symmetry for the 4D Harmonic Oscillator and U(1) Monopole [J].
Aghaei, S. ;
Chenaghlou, A. .
FEW-BODY SYSTEMS, 2015, 56 (01) :53-61
[2]   Solution of the Dirac equation with some superintegrable potentials by the quadratic algebra approach [J].
Aghaei, S. ;
Chenaghlou, A. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (06)
[3]   Spin and pseudospin symmetries and the equivalent spectra of relativistic spin-1/2 and spin-0 particles [J].
Alberto, P. ;
de Castro, A. S. ;
Malheiro, M. .
PHYSICAL REVIEW C, 2007, 75 (04)
[4]   Dirac and Klein-Gordon equations with equal scalar and vector potentials [J].
Alhaidari, AD ;
Bahlouli, H ;
Al-Hasan, A .
PHYSICS LETTERS A, 2006, 349 (1-4) :87-97
[5]   On the exact solutions of the Dirac equation with a novel angle-dependent potential [J].
Berkdemir, Cueneyt ;
Cheng, Yan-Fu .
PHYSICA SCRIPTA, 2009, 79 (03)
[6]   DEFORMED OSCILLATOR ALGEBRAS FOR 2-DIMENSIONAL QUANTUM SUPERINTEGRABLE SYSTEMS [J].
BONATSOS, D ;
DASKALOYANNIS, C ;
KOKKOTAS, K .
PHYSICAL REVIEW A, 1994, 50 (05) :3700-3709
[7]   QUANTUM-ALGEBRAIC DESCRIPTION OF QUANTUM SUPERINTEGRABLE SYSTEMS IN 2 DIMENSIONS [J].
BONATSOS, D ;
DASKALOYANNIS, C ;
KOKKOTAS, K .
PHYSICAL REVIEW A, 1993, 48 (05) :R3407-R3410
[8]   COMPLETELY INTEGRABLE RELATIVISTIC HAMILTONIAN-SYSTEMS AND SEPARATION OF VARIABLES IN HERMITIAN HYPERBOLIC SPACES [J].
BOYER, CP ;
KALNINS, EG ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (08) :2022-2034
[9]   Exactly solvable potentials of the Klein-Gordon equation with the supersymmetry method [J].
Chen, G ;
Chen, ZD ;
Xuan, PC .
PHYSICS LETTERS A, 2006, 352 (4-5) :317-320
[10]   Exact bound state solutions of the s-wave Klein-Gordon equation with the generalized Hulthen potential [J].
Chen, G ;
Chen, ZD ;
Lou, ZM .
PHYSICS LETTERS A, 2004, 331 (06) :374-377