Finding Lesion Correspondences in Different Views of Automated 3D Breast Ultrasound

被引:0
|
作者
Tan, Tao [1 ]
Platel, Bram
Hicks, Michael [1 ]
Mann, Ritse M. [1 ]
Karssemeijer, Nico [1 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Radiol, NL-6525 ED Nijmegen, Netherlands
来源
MEDICAL IMAGING 2013: COMPUTER-AIDED DIAGNOSIS | 2013年 / 8670卷
关键词
automated 3D breast ultrasound; breast cancer; CAD; automated linkage; MAMMOGRAPHY;
D O I
10.1117/12.2007475
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Screening with automated 3D breast ultrasound (ABUS) is gaining popularity. However, the acquisition of multiple views required to cover an entire breast makes radiologic reading time-consuming. Linking lesions across views can facilitate the reading process. In this paper, we propose a method to automatically predict the position of a lesion in the target ABUS views, given the location of the lesion in a source ABUS view. We combine features describing the lesion location with respect to the nipple, the transducer and the chestwall, with features describing lesion properties such as intensity, spiculation, blobness, contrast and lesion likelihood. By using a grid search strategy, the location of the lesion was predicted in the target view. Our method achieved an error of 15.64 mm +/- 16.13 mm. The error is small enough to help locate the lesion with minor additional interaction.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Breast Tumor Heterogeneity Quantification using 3D Ultrasound Texture
    Megha, R.
    Geethapriya
    Radhakrishna, Selvi
    Eranki, Avinash
    PROCEEDINGS OF THE 2024 IEEE SOUTH ASIAN ULTRASONICS SYMPOSIUM, SAUS 2024, 2024,
  • [42] Breast Sonography-2D, 3D, 4D Ultrasound or Elastography?
    Weismann, Christian
    Mayr, Christian
    Egger, Heike
    Auer, Alena
    BREAST CARE, 2011, 6 (02) : 98 - 103
  • [43] Computer aided detection in automated 3-D breast ultrasound images: a survey
    Kozegar, Ehsan
    Soryani, Mohsen
    Behnam, Hamid
    Salamati, Masoumeh
    Tan, Tao
    ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (03) : 1919 - 1941
  • [44] Mask Branch Network: Weakly Supervised Branch Network with a Template Mask for Classifying Masses in 3D Automated Breast Ultrasound
    Kim, Daekyung
    Park, Haesol
    Jang, Mijung
    Lee, Kyong-Joon
    APPLIED SCIENCES-BASEL, 2022, 12 (13):
  • [45] Improved Mass Detection in 3D Automated Breast Ultrasound Using Region Based Features and Multi-view Information
    Ye, Chuyang
    Vaidya, Vivek
    Zhao, Fei
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 2865 - 2868
  • [46] Breast lesion segmentation and characterization using the Small Tumor-Aware Network (STAN) and 2D/3D shape descriptors in ultrasound images
    Bass, Vivian
    Mateos, Maria-Julieta
    Rosado-Mendez, Ivan M.
    Marquez, Jorge A.
    17TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2021, 12088
  • [47] Intraoperative 3D ultrasound guidance system for permanent breast seed implantation
    Michael, Justin
    Morton, Daniel
    Batchelar, Deidre
    Hilts, Michelle
    Fenster, Aaron
    MEDICAL IMAGING 2017: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2017, 10135
  • [48] Development of a 3D ultrasound guidance system for permanent breast seed implantation
    Michael, Justin
    Morton, Daniel
    Batchelar, Deidre
    Hilts, Michelle
    Crook, Juanita
    Fenster, Aaron
    MEDICAL PHYSICS, 2018, 45 (08) : 3481 - 3495
  • [49] Spatial registration of temporally separated whole breast 3D ultrasound images
    Narayanasamy, Ganesh
    LeCarpentier, Gerald L.
    Roubidoux, Marilyn
    Fowlkes, J. Brian
    Schott, Anne F.
    Carson, Paul L.
    MEDICAL PHYSICS, 2009, 36 (09) : 4288 - 4300
  • [50] Automated breast ultrasound:: Lesion detection and BI-RADS™ classification -: a pilot study
    Wenkel, E.
    Heckmann, M.
    Heinrich, M.
    Schwab, S. A.
    Uder, M.
    Schulz-Wendtland, R.
    Bautz, W. A.
    Janka, R.
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2008, 180 (09): : 804 - 808