Finding Lesion Correspondences in Different Views of Automated 3D Breast Ultrasound

被引:0
|
作者
Tan, Tao [1 ]
Platel, Bram
Hicks, Michael [1 ]
Mann, Ritse M. [1 ]
Karssemeijer, Nico [1 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Radiol, NL-6525 ED Nijmegen, Netherlands
来源
MEDICAL IMAGING 2013: COMPUTER-AIDED DIAGNOSIS | 2013年 / 8670卷
关键词
automated 3D breast ultrasound; breast cancer; CAD; automated linkage; MAMMOGRAPHY;
D O I
10.1117/12.2007475
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Screening with automated 3D breast ultrasound (ABUS) is gaining popularity. However, the acquisition of multiple views required to cover an entire breast makes radiologic reading time-consuming. Linking lesions across views can facilitate the reading process. In this paper, we propose a method to automatically predict the position of a lesion in the target ABUS views, given the location of the lesion in a source ABUS view. We combine features describing the lesion location with respect to the nipple, the transducer and the chestwall, with features describing lesion properties such as intensity, spiculation, blobness, contrast and lesion likelihood. By using a grid search strategy, the location of the lesion was predicted in the target view. Our method achieved an error of 15.64 mm +/- 16.13 mm. The error is small enough to help locate the lesion with minor additional interaction.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Radiologists' performance in the detection of benign and malignant masses with 3D automated breast ultrasound (ABUS)
    Chang, Jung Min
    Moon, Woo Kyung
    Cho, Nariya
    Park, Jeong Seon
    Kim, Seung Ja
    EUROPEAN JOURNAL OF RADIOLOGY, 2011, 78 (01) : 99 - 103
  • [22] Deep learning based tumor detection and segmentation for automated 3D breast ultrasound imaging
    Barkhof, Francien
    Abbring, Silvia
    Pardasani, Rohit
    Awasthi, Navchetan
    PROCEEDINGS OF THE 2024 IEEE SOUTH ASIAN ULTRASONICS SYMPOSIUM, SAUS 2024, 2024,
  • [23] Cross-Model Attention-Guided Tumor Segmentation for 3D Automated Breast Ultrasound (ABUS) Images
    Zhou, Yue
    Chen, Houjin
    Li, Yanfeng
    Cao, Xuyang
    Wang, Shu
    Shen, Dinggang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (01) : 301 - 311
  • [24] Comparison between different imaging techniques in the evaluation of malignant breast lesions: can 3D ultrasound be useful?
    Clauser, Paola
    Londero, Viviana
    Como, Giuseppe
    Girometti, Rossano
    Bazzocchi, Massimo
    Zuiani, Chiara
    RADIOLOGIA MEDICA, 2014, 119 (04): : 240 - 248
  • [25] Comparison of Lesion Detection in the Transverse and Coronal Views on Automated Breast Sonography
    Chae, Eun Young
    Cha, Joo Hee
    Kim, Hak Hee
    Shin, Hee Jung
    JOURNAL OF ULTRASOUND IN MEDICINE, 2015, 34 (01) : 125 - 135
  • [26] Weakly supervised Branch Network with Template Mask for Classifying Masses in 3D Automated Breast Ultrasound
    Kim, Daekyung
    Nam, Chang-Mo
    Park, Haesol
    Jang, Mijung
    Lee, Kyong Joon
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 3212 - 3219
  • [27] Initial results of the FUSION-X-US prototype combining 3D automated breast ultrasound and digital breast tomosynthesis
    Benedikt Schaefgen
    Joerg Heil
    Richard G. Barr
    Marcus Radicke
    Aba Harcos
    Christina Gomez
    Anne Stieber
    André Hennigs
    Alexandra von Au
    Julia Spratte
    Geraldine Rauch
    Joachim Rom
    Florian Schütz
    Christof Sohn
    Michael Golatta
    European Radiology, 2018, 28 : 2499 - 2506
  • [28] Multi-modal artificial intelligence for the combination of automated 3D breast ultrasound and mammograms in a population of women with predominantly dense breasts
    Tan, Tao
    Rodriguez-Ruiz, Alejandro
    Zhang, Tianyu
    Xu, Lin
    Beets-Tan, Regina G. H.
    Shen, Yingzhao
    Karssemeijer, Nico
    Xu, Jun
    Mann, Ritse M.
    Bao, Lingyun
    INSIGHTS INTO IMAGING, 2023, 14 (01)
  • [29] Multi-modal artificial intelligence for the combination of automated 3D breast ultrasound and mammograms in a population of women with predominantly dense breasts
    Tao Tan
    Alejandro Rodriguez-Ruiz
    Tianyu Zhang
    Lin Xu
    Regina G. H. Beets-Tan
    Yingzhao Shen
    Nico Karssemeijer
    Jun Xu
    Ritse M. Mann
    Lingyun Bao
    Insights into Imaging, 14
  • [30] Initial results of the FUSION-X-US prototype combining 3D automated breast ultrasound and digital breast tomosynthesis
    Schaefgen, Benedikt
    Heil, Joerg
    Barr, Richard G.
    Radicke, Marcus
    Harcos, Aba
    Gomez, Christina
    Stieber, Anne
    Hennigs, Andre
    von Au, Alexandra
    Spratte, Julia
    Rauch, Geraldine
    Rom, Joachim
    Schuetz, Florian
    Sohn, Christof
    Golatta, Michael
    EUROPEAN RADIOLOGY, 2018, 28 (06) : 2499 - 2506