Algebro-geometric solutions of the Boussinesq hierarchy

被引:78
作者
Dickson, R [1 ]
Gesztesy, F
Unterkofler, K
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Graz Tech Univ, Inst Theoret Phys, A-8010 Graz, Austria
关键词
D O I
10.1142/S0129055X9900026X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We continue a recently developed systematic approach to the Bousinesq (Bsq) hierarchy and its algebro-geometric solutions. Our formalism includes a recursive construction of Lax pairs and establishes associated Burchnall-Chaundy curves, Baker-Akhiezer functions and Dubrovin-type equations for analogs of Dirichlet and Neumann divisors. The principal aim of this paper is a detailed theta function representation of all algebro-geometric quasiperiodic solutions and related quantities of the Bsq hierarchy.
引用
收藏
页码:823 / 879
页数:57
相关论文
共 61 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   RATIONAL AND ELLIPTIC SOLUTIONS OF KORTEWEG DE-VRIES EQUATION AND A RELATED MANY-BODY PROBLEM [J].
AIRAULT, H ;
MCKEAN, HP ;
MOSER, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :95-148
[3]  
ALTRAULT H, 1986, PHYSICA D, V21, P171
[4]  
[Anonymous], LEHRBUCH THETAFUNKTI
[5]  
[Anonymous], OPERATOR THEORY ADV
[6]  
[Anonymous], 1998, NOTICES AM MATH SCO
[7]  
Beals R., 1988, DIRECT INVERSE SCATT
[8]  
Belokolos ED., 1994, Springer series in nonlinear dynamics
[9]   GLOBAL EXISTENCE OF SMOOTH SOLUTIONS AND STABILITY OF SOLITARY WAVES FOR A GENERALIZED BOUSSINESQ EQUATION [J].
BONA, JL ;
SACHS, RL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) :15-29
[10]  
Brieskorn E., 1981, PLANE ALGEBRAIC CURV