A comparative study of electrochemical methods on Pt-Ru DMFC anode catalysts: The effect of Ru addition

被引:87
作者
Sahin, Ozlem [1 ]
Kivrak, Hilal [1 ]
机构
[1] Selcuk Univ, Dept Chem Engn, TR-42031 Konya, Turkey
关键词
Methanol electro-oxidation catalysis; Platinum ruthenium anode catalyst; Direct methanol fuel cells; Electrochemical impedance spectroscopy; METHANOL OXIDATION; ELECTROCATALYTIC PROPERTIES; ALLOY NANOPARTICLES; POLYOL SYNTHESIS; CARBON-MONOXIDE; ELECTROOXIDATION; PLATINUM; PTRU/C; RUTHENIUM; IMPEDANCE;
D O I
10.1016/j.ijhydene.2012.10.066
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present study comparative electrochemical study of methanol electro-oxidation reaction, the effect of ruthenium addition and experimental parameters on methanol electro-oxidation reaction at high performance carbon supported Pt and Pt-Ru catalysts have been studied by cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) in H2SO4 (0.05-2.00 M) + CH3OH (0.01-4.00 M) at 20-70 degrees C. Tafel plots for the methanol oxidation reaction on Pt and Pt-Ru catalysts show reasonably well-defined linear region with the slopes of 128-174 mV dec(-1)(alpha = 0.34-0.46). The activation energies from Arrhenius plots have been found as 39.06-50.65 kJ mol(-1). As a result, methanol oxidation is enhanced by the addition of ruthenium. Furthermore, Pt-Ru (25:1) catalyst shows best electro-catalytic activity, higher resistance to CO, and better long term stability compared to Pt-Ru (3:1), Pt-Ru (1:1), and Pt. Finally, the EIS measurements on Pt-Ru (25:1) catalyst reveals that methanol electro-oxidation reaction consists of two process: methanol dehydrogenation step at low potentials (<700 mV) and the oxidation removal of COads by OHads at higher potentials (>700 mV). Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:901 / 909
页数:9
相关论文
共 55 条
[1]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[2]   Effect of Pt-Ru alloy composition on high-temperature methanol electro-oxidation [J].
Aricò, AS ;
Antonucci, PL ;
Modica, E ;
Baglio, V ;
Kim, H ;
Antonucci, V .
ELECTROCHIMICA ACTA, 2002, 47 (22-23) :3723-3732
[3]  
Baeg JO, 2003, ABSTR PAP AM CHEM S, V226, pU755
[4]   Electrochemical oxidation of ethanol on Pt-ZrO2/C catalyst [J].
Bai, YX ;
Wu, JJ ;
Xi, JY ;
Wang, JS ;
Zhu, WT ;
Chen, LQ ;
Qiu, XP .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (11) :1087-1090
[5]   Synthesis of Core-Shell PtRu Dendrimer-Encapsulated Nanoparticles. Relevance as Electrocatalysts for CO Oxidation [J].
Bernechea, Maria ;
Garcia-Rodriguez, Sergio ;
Terreros, Pilar ;
de Jesus, Ernesto ;
Fierro, Jose L. G. ;
Rojas, Sergio .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (04) :1287-1294
[6]   Platinum-Decorated Ruthenium Nanoparticles for Enhanced Methanol Electrooxidation [J].
Chen, Ching-Hsiang ;
Sarma, Loka Subramanyam ;
Wang, Di-Yan ;
Lai, Feng-Ju ;
Al Andra, Cun-Cun ;
Chang, Shi-Hong ;
Liu, Din-Goa ;
Chen, Chia-Chun ;
Lee, Jyh-Fu ;
Hwang, Bing-Joe .
CHEMCATCHEM, 2010, 2 (02) :159-166
[7]  
Chen WX, 2004, CHINESE J INORG CHEM, V20, P1467
[8]   Novel electrocatalysts for direct methanol fuel cells [J].
Chu, D ;
Jiang, RZ .
SOLID STATE IONICS, 2002, 148 (3-4) :591-599
[9]   Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes [J].
Cohen, Jamie L. ;
Volpe, David J. ;
Abruna, Hector D. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (01) :49-77
[10]   Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts [J].
Colmati, Flavio ;
Antolini, Ermete ;
Gonzalez, Ernesto R. .
JOURNAL OF POWER SOURCES, 2006, 157 (01) :98-103