Radiation effects in bulk nanocrystalline FeAl alloy

被引:24
作者
Kilmametov, A. [1 ,2 ]
Balogh, A. [3 ]
Ghafari, M. [4 ]
Gammer, C. [5 ]
Mangler, C. [5 ]
Rentenberger, C. [5 ]
Valiev, R. [2 ]
Hahn, H. [1 ,4 ]
机构
[1] KIT, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[2] Ufa State Aviat Tech Univ, Inst Phys Adv Mat, Ufa 450000, Russia
[3] Tech Univ Darmstadt, Inst Mat Sci, D-64287 Darmstadt, Germany
[4] Tech Univ Darmstadt, Joint Res Lab Nanomat, D-64287 Darmstadt, Germany
[5] Univ Vienna, A-1090 Vienna, Austria
来源
RADIATION EFFECTS AND DEFECTS IN SOLIDS | 2012年 / 167卷 / 08期
关键词
radiation damage; nanocrystalline materials; X-ray diffraction; Mossbauer spectroscopy; SEVERE PLASTIC-DEFORMATION; NANOSTRUCTURED MATERIALS; MECHANICAL-PROPERTIES; ION IRRADIATION; DEFECTS; METALS; AL;
D O I
10.1080/10420150.2012.666241
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Bulk-ordered nanocrystalline FeAl intermetallic compound with a grain size of 35 nm was prepared using severe plastic deformation. Nanocrystalline and coarse-grained counterparts with a grain size of 160 nm were subjected to 1.5 MeV Ar+ ion irradiation at room temperature. Enhanced irradiation resistance of nanocrystalline FeAl has clearly been identified by means of grazing-incidence X-ray diffraction and Mossbauer spectroscopy. At the identical damage dose, the nanocrystalline FeAl retains long-range ordering in the B2-superlattice structure, while the coarse-grained state becomes already substantially disordered. The present experimental studies verify that fully dense ordered intermetallic alloys are promising candidate materials for radiation environments.
引用
收藏
页码:631 / 639
页数:9
相关论文
共 15 条
[1]   THE EVALUATION OF HYPERFINE FIELD DISTRIBUTIONS IN OVERLAPPING AND ASYMMETRIC MOSSBAUER-SPECTRA - A STUDY OF THE AMORPHOUS ALLOY PD77.5-XCU6SI16.5FEX [J].
BRAND, RA ;
LAUER, J ;
HERLACH, DM .
JOURNAL OF PHYSICS F-METAL PHYSICS, 1983, 13 (03) :675-683
[2]   Influence of magnetization on the reordering of nanostructured ball-milled Fe-40 at. % Al powders [J].
Hernando, A ;
Amils, X ;
Nogues, J ;
Surinach, S ;
Baro, MD ;
Ibarra, MR .
PHYSICAL REVIEW B, 1998, 58 (18) :11864-11867
[3]   Enhanced ion irradiation resistance of bulk nanocrystalline TiNi alloy [J].
Kilmametov, A. R. ;
Gunderov, D. V. ;
Valiev, R. Z. ;
Balogh, A. G. ;
Hahn, H. .
SCRIPTA MATERIALIA, 2008, 59 (10) :1027-1030
[4]   Structural modifications during heating of bulk nanocrystalline FeAl produced by high-pressure torsion [J].
Mangler, C. ;
Gammer, C. ;
Karnthaler, H. P. ;
Rentenberger, C. .
ACTA MATERIALIA, 2010, 58 (17) :5631-5638
[5]  
Nita N, 2005, PHILOS MAG, V85, P723, DOI [10.1080/14786430412331319965, 10.1080/02678370412331319965]
[6]   Instability of irradiation induced defects in nanostructured materials [J].
Rose, M ;
Balogh, AG ;
Hahn, H .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1997, 127 :119-122
[7]   Atomic scale modelling of the primary damage state of irradiated fcc and bcc nanocrystalline metals [J].
Samaras, M. ;
Derlet, P. M. ;
Van Swygenhoven, H. ;
Victoria, M. .
JOURNAL OF NUCLEAR MATERIALS, 2006, 351 (1-3) :47-55
[8]   Computer simulation of displacement cascades in nanocrystalline Ni [J].
Samaras, M ;
Derlet, PM ;
Van Swygenhoven, H ;
Victoria, M .
PHYSICAL REVIEW LETTERS, 2002, 88 (12) :4
[9]  
Shen T.D., 2007, APPL PHYS LETT, V90
[10]   Nanostructuring of metals by severe plastic deformation for advanced properties [J].
Valiev, R .
NATURE MATERIALS, 2004, 3 (08) :511-516