Discrete breathers in an one-dimensional array of magnetic dots

被引:2
作者
Pylypchuk, Roman L. [1 ]
Zolotaryuk, Yaroslav [2 ]
机构
[1] Univ Munich, Dept Phys, D-80333 Munich, Germany
[2] Natl Acad Sci Ukraine, Bogolyubov Inst Theoret Phys, UA-03680 Kiev, Ukraine
关键词
QUASI-PERIODIC BREATHERS; LOCALIZED EXCITATIONS; HAMILTONIAN NETWORKS; EXISTENCE; LATTICES; OSCILLATIONS; DIAMETER; DENSITY; STATES; MODES;
D O I
10.1063/1.4930972
中图分类号
O59 [应用物理学];
学科分类号
摘要
The dynamics of the one-dimensional array of magnetic particles (dots) with the easy-plane anisotropy is investigated. The particles interact with each other via the magnetic dipole interaction and the whole system is governed by the set of Landau-Lifshitz equations. The spatially localized and time-periodic solutions known as discrete breathers (or intrinsic localized modes) are identified. These solutions have no analogue in the continuum limit and consist of the core where the magnetization vectors precess around the hard axis and the tails where the magnetization vectors oscillate around the equilibrium position. (C) 2015 AIP Publishing LLC.
引用
收藏
页码:733 / 738
页数:6
相关论文
共 47 条
  • [1] Akhiezer A.I., 1968, SPIN WAVES
  • [2] Breathers in nonlinear lattices: Existence, linear stability and quantization
    Aubry, S
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) : 201 - 250
  • [3] Quasi periodic breathers in Hamiltonian lattices with symmetries
    Bambusi, D
    Vella, D
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2002, 2 (03): : 389 - 399
  • [4] Collective modes for an array of magnetic dots with perpendicular magnetization
    Bondarenko, P. V.
    Galkin, A. Yu
    Ivanov, B. A.
    Zaspel, C. E.
    [J]. PHYSICAL REVIEW B, 2010, 81 (22)
  • [5] Cheng JY, 2001, ADV MATER, V13, P1174, DOI 10.1002/1521-4095(200108)13:15<1174::AID-ADMA1174>3.0.CO
  • [6] 2-Q
  • [7] SINGLE-DOMAIN MAGNETIC PILLAR ARRAY OF 35-NM DIAMETER AND 65-GBITS/IN(2) DENSITY FOR ULTRAHIGH DENSITY QUANTUM MAGNETIC STORAGE
    CHOU, SY
    WEI, MS
    KRAUSS, PR
    FISCHER, PB
    [J]. JOURNAL OF APPLIED PHYSICS, 1994, 76 (10) : 6673 - 6675
  • [8] Dynamics and stability of a linear cluster of spherical magnetic nanoparticles
    Dzian, S. A.
    Ivanov, B. A.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2012, 115 (05) : 854 - 865
  • [9] Epperson J. F., 2007, An introduction to numerical methods and analysis
  • [10] Faddeev L. D., 2007, Classics in Mathematics