On a series of modules for the symplectic group in characteristic 2

被引:1
作者
Cardinali, Ilaria [1 ]
Pasini, Antonio [1 ]
机构
[1] Univ Siena, Dept Informat Engn, I-53100 Siena, Italy
来源
THEORY AND APPLICATIONS OF FINITE FIELDS | 2012年 / 579卷
关键词
Symplectic grassmannians; Weyl modules; REPRESENTATIONS;
D O I
10.1090/conm/579/11517
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a 2n-dimensional vector space defined over an arbitrary field IF and G the symplectic group Sp(2n, F) stabilizing a non-degenerate alternating form alpha(.,.) of V. Let G(k) be the k-grassmannian of PG(V) and Delta(k) the k-grassmannian of the C-n-building Delta associated to G. Put W-k := Lambda V-k and let iota(k) : G(k) -> W-k be the natural embedding of G(k) sending a k-subspace < x(1), ... , x(k)> of V to the I-subspace (x(1) Lambda ... Lambda x(k)) of W-k. Let epsilon(k) -> V-k be the embedding of Delta(k) induced by iota(k), where V-k is the subspace of W-k spanned by the iota(k)-images of the totally a-isotropic k-spaces of V. Recall that dim(V-k) = ((2n)(k)) - ((2n)(k-2)) For i = 0,1, ... , left perpendiculark/2right perpendicular let V-k-2i((k)) be the subspace of W-k spanned by the iota(k)-images of the k-subspaces X of V such that the codimension of X X boolean AND X-perpendicular to in X is at least 2i. The group G stabilizes each of the subspaces V-k-2i((k)). Hence it also acts on each of the sections (Vk-2iVk-2i+2(k))-V-(k)/. In [5], exploiting the fact that the embeddings ek_2i are universal when char(F) not equal 2, Blok and the authors of this paper have proved that if char(F) not equal 2 then V-k-2i((k))/V-k-2i+2((k)) and Vk-2i are isomorphic as C-modules, for every i = 1, ... , left perpendiculark/2right perpendicular. In the present paper we shall prove that the same holds true when char(F) = 2.
引用
收藏
页码:43 / 54
页数:12
相关论文
共 15 条
[1]   Branching rules for modular fundamental representations of symplectic groups [J].
Baranov, AA ;
Suprunenko, ID .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 :409-420
[2]  
Blok RJ, 2011, B BELG MATH SOC-SIM, V18, P1
[3]   The generating rank of the symplectic grassmannians: Hyperbolic and isotropic geometry [J].
Blok, Rieuwert J. .
EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (05) :1368-1394
[4]   Highest weight modules and polarized embeddings of shadow spaces [J].
Blok, Rieuwert J. .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2011, 34 (01) :67-113
[5]  
Bourbaki N., 1975, ACTUALITES SCI INDUS, V1364
[6]  
Burau W., 1961, MEHRDIMENSIONALE PRO
[7]  
Cardinali I., 2011, INNOV INCIDENCE GEOM, V12, P85
[8]   On the generation of dual polar spaces of symplectic type over finite fields [J].
Cooperstein, BN .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1998, 83 (02) :221-232
[9]  
Humphreys J.E., 1972, INTRO LIE ALGEBRAS R
[10]   Absolute embeddings of point-line geometries [J].
Kasikova, A ;
Shult, E .
JOURNAL OF ALGEBRA, 2001, 238 (01) :265-291