Many-body localization in a quantum simulator with programmable random disorder

被引:5
|
作者
Smith, J. [1 ,2 ]
Lee, A. [1 ,2 ]
Richerme, P. [3 ]
Neyenhuis, B. [1 ,2 ]
Hess, P. W. [1 ,2 ]
Hauke, P. [4 ,5 ]
Heyl, M. [4 ,5 ,6 ]
Huse, D. A. [7 ]
Monroe, C. [1 ,2 ]
机构
[1] Univ Maryland, Dept Phys, Joint Quantum Inst, College Pk, MD 20742 USA
[2] NIST, College Pk, MD 20742 USA
[3] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
[4] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[5] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[6] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany
[7] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
ANDERSON LOCALIZATION; THERMALIZATION; ENTANGLEMENT; PROPAGATION;
D O I
10.1038/NPHYS3783
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When a system thermalizes it loses all memory of its initial conditions. Even within a closed quantum system, subsystems usually thermalize using the rest of the system as a heat bath. Exceptions to quantum thermalization have been observed, but typically require inherent symmetries(1,2) or noninteracting particles in the presence of static disorder(3-6). However, for strong interactions and high excitation energy there are cases, known as many-body localization (MBL), where disordered quantum systems can fail to thermalize(7-10). We experimentally generate MBL states by applying an Ising Hamiltonian with long-range interactions and programmable random disorder to ten spins initialized far from equilibrium. Using experimental and numerical methods we observe the essential signatures of MBL: initial-state memory retention, Poissonian distributed energy level spacings, and evidence of long-time entanglement growth. Our platform can be scaled to more spins, where a detailed modelling of MBL becomes impossible.
引用
收藏
页码:907 / 911
页数:5
相关论文
共 50 条
  • [21] On Many-Body Localization for Quantum Spin Chains
    John Z. Imbrie
    Journal of Statistical Physics, 2016, 163 : 998 - 1048
  • [22] Ideal quantum glass transitions: many-body localization without quenched disorder
    Schiulaz, M.
    Mueller, M.
    15TH INTERNATIONAL CONFERENCE ON TRANSPORT IN INTERACTING DISORDERED SYSTEMS (TIDS15), 2014, 1610 : 11 - 23
  • [23] Many-Body Localization and the Emergence of Quantum Darwinism
    Mirkin, Nicolas
    Wisniacki, Diego A.
    ENTROPY, 2021, 23 (11)
  • [24] Engineering many-body quantum dynamics by disorder
    Buonsante, Pierfrancesco
    Wimberger, Sandro
    PHYSICAL REVIEW A, 2008, 77 (04):
  • [25] Many-body localization from random magnetic anisotropy
    Gu, Jie
    Liu, Shuanglong
    Yazback, Maher
    Cheng, Hai-Ping
    Zhang, X-G
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [26] Observation of Stark many-body localization without disorder
    Morong, W.
    Liu, F.
    Becker, P.
    Collins, K. S.
    Feng, L.
    Kyprianidis, A.
    Pagano, G.
    You, T.
    Gorshkov, A. V.
    Monroe, C.
    NATURE, 2021, 599 (7885) : 393 - +
  • [27] Fate of dynamical many-body localization in the presence of disorder
    Roy, Analabha
    Das, Arnab
    PHYSICAL REVIEW B, 2015, 91 (12)
  • [28] Observation of Stark many-body localization without disorder
    W. Morong
    F. Liu
    P. Becker
    K. S. Collins
    L. Feng
    A. Kyprianidis
    G. Pagano
    T. You
    A. V. Gorshkov
    C. Monroe
    Nature, 2021, 599 : 393 - 398
  • [29] Observing quantum many-body scars in random quantum circuits
    Andrade, Barbara
    Bhattacharya, Utso
    Chhajlany, Ravindra W.
    Grass, Tobias
    Lewenstein, Maciej
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [30] Many-body localization in generalized Kondo lattice with disorder
    Cao, Ye
    Zhang, Wei
    EPL, 2020, 129 (02)