Many-body localization in a quantum simulator with programmable random disorder

被引:5
|
作者
Smith, J. [1 ,2 ]
Lee, A. [1 ,2 ]
Richerme, P. [3 ]
Neyenhuis, B. [1 ,2 ]
Hess, P. W. [1 ,2 ]
Hauke, P. [4 ,5 ]
Heyl, M. [4 ,5 ,6 ]
Huse, D. A. [7 ]
Monroe, C. [1 ,2 ]
机构
[1] Univ Maryland, Dept Phys, Joint Quantum Inst, College Pk, MD 20742 USA
[2] NIST, College Pk, MD 20742 USA
[3] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
[4] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[5] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[6] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany
[7] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
ANDERSON LOCALIZATION; THERMALIZATION; ENTANGLEMENT; PROPAGATION;
D O I
10.1038/NPHYS3783
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When a system thermalizes it loses all memory of its initial conditions. Even within a closed quantum system, subsystems usually thermalize using the rest of the system as a heat bath. Exceptions to quantum thermalization have been observed, but typically require inherent symmetries(1,2) or noninteracting particles in the presence of static disorder(3-6). However, for strong interactions and high excitation energy there are cases, known as many-body localization (MBL), where disordered quantum systems can fail to thermalize(7-10). We experimentally generate MBL states by applying an Ising Hamiltonian with long-range interactions and programmable random disorder to ten spins initialized far from equilibrium. Using experimental and numerical methods we observe the essential signatures of MBL: initial-state memory retention, Poissonian distributed energy level spacings, and evidence of long-time entanglement growth. Our platform can be scaled to more spins, where a detailed modelling of MBL becomes impossible.
引用
收藏
页码:907 / 911
页数:5
相关论文
共 50 条
  • [1] Many-body localization in a quantum simulator with programmable random disorder
    J. Smith
    A. Lee
    P. Richerme
    B. Neyenhuis
    P. W. Hess
    P. Hauke
    M. Heyl
    D. A. Huse
    C. Monroe
    Nature Physics, 2016, 12 : 907 - 911
  • [2] Asymptotic Quantum Many-Body Localization from Thermal Disorder
    Wojciech De Roeck
    François Huveneers
    Communications in Mathematical Physics, 2014, 332 : 1017 - 1082
  • [3] Asymptotic Quantum Many-Body Localization from Thermal Disorder
    De Roeck, Wojciech
    Huveneers, Francois
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 332 (03) : 1017 - 1082
  • [4] Many-body localization and quantum thermalization
    Altman, Ehud
    NATURE PHYSICS, 2018, 14 (10) : 979 - 983
  • [5] Quantum revivals and many-body localization
    Vasseur, R.
    Parameswaran, S. A.
    Moore, J. E.
    PHYSICAL REVIEW B, 2015, 91 (14)
  • [6] Many-body localization and quantum thermalization
    Ehud Altman
    Nature Physics, 2018, 14 : 979 - 983
  • [7] Disorder in Quantum Many-Body Systems
    Vojta, Thomas
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 10, 2019, 10 (01): : 233 - 252
  • [8] Many-body localization due to random interactions
    Sierant, Piotr
    Delande, Dominique
    Zakrzewski, Jakub
    PHYSICAL REVIEW A, 2017, 95 (02)
  • [9] Many-body localization caused by temporal disorder
    Mierzejewski, Marcin
    Giergiel, Krzysztof
    Sacha, Krzysztof
    PHYSICAL REVIEW B, 2017, 96 (14)
  • [10] Many-body localization transition with correlated disorder
    Shi, Zhengyan Darius
    Khemani, Vedika
    Vasseur, Romain
    Gopalakrishnan, Sarang
    PHYSICAL REVIEW B, 2022, 106 (14)