Dynamics of phase separation from holography

被引:27
作者
Attems, Maximilian [1 ,2 ,3 ]
Bea, Yago [2 ,3 ]
Casalderrey-Solana, Jorge [2 ,3 ]
Mateos, David [2 ,3 ,4 ]
Zilhao, Miguel [2 ,3 ,5 ]
机构
[1] Univ Santiago de Compostela, Inst Galego Fis Altas Enerxias IGFAE, Galicia 15782, Spain
[2] Univ Barcelona, Dept Fis Quant & Astrofis, Marti i Franques 1, Barcelona 08028, Spain
[3] Univ Barcelona, Inst Ciencies Cosmos ICC, Marti i Franques 1, Barcelona 08028, Spain
[4] Inst Catalana Recerca & Estudis Avancats ICREA, Passeig Lluis Co 23, Barcelona, Spain
[5] Univ Lisbon, Inst Super Tecn, Dept Fis, CENTRA, Ave Rovisco Pais 1, P-1049 Lisbon, Portugal
基金
欧盟地平线“2020”;
关键词
Gauge-gravity correspondence; Holography and quark-gluon plasmas; AdS-CFT Correspondence; THERMODYNAMICS;
D O I
10.1007/JHEP01(2020)106
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We use holography to develop a physical picture of the real-time evolution of the spinodal instability of a four-dimensional, strongly-coupled gauge theory with a first-order, thermal phase transition. We numerically solve Einstein's equations to follow the evolution, in which we identify four generic stages: a first, linear stage in which the instability grows exponentially; a second, non-linear stage in which peaks and/or phase domains are formed; a third stage in which these structures merge; and a fourth stage in which the system finally relaxes to a static, phase-separated configuration. On the gravity side the latter is described by a static, stable, inhomogeneous horizon. We conjecture and provide evidence that all static, non-phase separated configurations in large enough boxes are dynamically unstable. We show that all four stages are well described by the constitutive relations of second-order hydrodynamics that include all second-order gradients that are purely spatial in the local rest frame. In contrast, a Muller-Israel-Stewart-type formulation of hydrodynamics fails to provide a good description for two reasons. First, it misses some large, purely-spatial gradient corrections. Second, several second-order transport coefficients in this formulation, including the relaxation times tau(pi) and tau(Pi), diverge at the points where the speed of sound vanishes.
引用
收藏
页数:49
相关论文
共 55 条
[1]  
[Anonymous], 2019, PHYS REV D, DOI DOI 10.1103/PHYSREVD.99.066004
[2]  
[Anonymous], 2015, INT J MOD PHYS E, DOI DOI 10.1142/S0218301315300118
[3]  
[Anonymous], 2010, PHYS REV D, DOI DOI 10.1103/PHYSREVD.82.026006
[4]  
[Anonymous], 2011, PHYS REV D, DOI DOI 10.1103/PHYSREVD.83.046008
[5]  
Armas J., 2017, JHEP, V06
[6]   Surface transport in plasma-balls [J].
Armas, Jay ;
Bhattacharya, Jyotirmoy ;
Kundu, Nilay .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (06)
[7]  
Attems M., 2019, DYNAMICS PHASE SEPAR
[8]   Holographic Collisions across a Phase Transition [J].
Attems, Maximilian ;
Bea, Yago ;
Casalderrey-Solana, Jorge ;
Mateos, David ;
Triana, Miquel ;
Zilhao, Miguel .
PHYSICAL REVIEW LETTERS, 2018, 121 (26)
[9]   Paths to equilibrium in non-conformal collisions [J].
Attems, Maximilian ;
Casalderrey-Solana, Jorge ;
Mateos, David ;
Santos-Olivan, Daniel ;
Sopuerta, Carlos F. ;
Triana, Miquel ;
Zilhao, Miguel .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (06)
[10]   Phase transitions, inhomogeneous horizons and second-order hydrodynamics [J].
Attems, Maximilian ;
Bea, Yago ;
Casalderrey-Solana, Jorge ;
Mateos, David ;
Triana, Miquel ;
Zilhao, Miguel .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (06)