ON THE IDENTIFICATION OF PIECEWISE CONSTANT COEFFICIENTS IN OPTICAL DIFFUSION TOMOGRAPHY BY LEVEL SET

被引:7
作者
Agnelli, J. P. [1 ]
De Cezaro, A. [2 ]
Leitao, A. [3 ]
Marques Alves, M. [3 ]
机构
[1] Univ Nacl Cordoba, FaMAF CIEM CONICET, Medina Allende S-N,X5000HUA, Cordoba, Argentina
[2] Fed Univ Rio Grande, Inst Math Stat & Phys, Av Italia Km 8, BR-96201900 Rio Grande, Brazil
[3] Univ Fed Santa Catarina, Dept Math, POB 476, BR-88040900 Florianopolis, SC, Brazil
关键词
Optical tomography; parameter identification; level set regularization; numerical strategy; SCATTERING MEDIA; INVERSE PROBLEMS; BOUNDARY; REGULARIZATION;
D O I
10.1051/cocv/2016007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a level set regularization approach combined with a split strategy for the simultaneous identification of piecewise constant diffusion and absorption coefficients from a finite set of optical tomography data (Neumann-to-Dirichlet data). This problem is a high nonlinear inverse problem combining together the exponential and mildly ill-posedness of diffusion and absorption coefficients, respectively. We prove that the parameter-to-measurement map satisfies sufficient conditions (continuity in the L 1 topology) to guarantee regularization properties of the proposed level set approach. On the other hand, numerical tests considering different configurations bring new ideas on how to propose a convergent split strategy for the simultaneous identification of the coefficients. The behavior and performance of the proposed numerical strategy is illustrated with some numerical examples.
引用
收藏
页码:663 / 683
页数:21
相关论文
共 31 条
[1]  
[Anonymous], 1988, Functional and variational methods
[2]  
[Anonymous], IMA VOL MATH APPL
[3]   Optical tomography in medical imaging [J].
Arridge, SR .
INVERSE PROBLEMS, 1999, 15 (02) :R41-R93
[4]   Nonuniqueness in diffusion-based optical tomography [J].
Arridge, SR ;
Lionheart, WRB .
OPTICS LETTERS, 1998, 23 (11) :882-884
[5]  
Brezis H., 2011, FUNCTIONAL ANAL SOBO
[6]   A survey in mathematics for industry - A survey on level set methods for inverse problems and optimal design [J].
Burger, M ;
Osher, SJ .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2005, 16 :263-301
[7]   On piecewise constant level-set (PCLS) methods for the identification of discontinuous parameters in ill-posed problems [J].
De Cezaro, A. ;
Leitao, A. ;
Tai, X-C .
INVERSE PROBLEMS, 2013, 29 (01)
[8]  
De Cezaro A., 2013, INVERSE PROBL SCI EN, V21, P1
[9]  
De Cezaro A., 2012, INVERSE PROBL SCI EN, V20, P517
[10]   On multiple level-set regularization methods for inverse problems [J].
DeCezaro, A. ;
Leitao, A. ;
Tai, X-C .
INVERSE PROBLEMS, 2009, 25 (03)