Branched chain amino acids and carbohydrate restriction exacerbate ketogenesis and hepatic mitochondrial oxidative dysfunction during NAFLD

被引:31
作者
Muyyarikkandy, Muhammed S. [1 ]
McLeod, Marc [2 ]
Maguire, Meghan [1 ]
Mahar, Rohit [2 ]
Kattapuram, Nathan [1 ]
Zhang, Christine [1 ]
Surugihalli, Chaitra [1 ]
Muralidaran, Vaishna [1 ]
Vavilikolanu, Kruthi [1 ]
Mathews, Clayton E. [2 ]
Merritt, Matthew E. [2 ]
Sunny, Nishanth E. [1 ]
机构
[1] Univ Maryland, Dept Anim & Avian Sci, College Pk, MD 20742 USA
[2] Univ Florida, Coll Med, Dept Biochem & Mol Biol, Gainesville, FL 32610 USA
基金
美国国家卫生研究院;
关键词
fatty liver; hepatic insulin resistance; lipogenesis; liver mitochondria; NONALCOHOLIC FATTY LIVER; TCA CYCLE; DIET; GLUCOSE; ADAPTATION; METABOLISM; STRESS; HUMANS; MICE; ACETOACETATE;
D O I
10.1096/fj.202001495R
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondrial adaptation during non-alcoholic fatty liver disease (NAFLD) include remodeling of ketogenic flux and sustained tricarboxylic acid (TCA) cycle activity, which are concurrent to onset of oxidative stress. Over 70% of obese humans have NAFLD and ketogenic diets are common weight loss strategies. However, the effectiveness of ketogenic diets toward alleviating NAFLD remains unclear. We hypothesized that chronic ketogenesis will worsen metabolic dysfunction and oxidative stress during NAFLD. Mice (C57BL/6) were kept (for 16-wks) on either a low-fat, high-fat, or high-fat diet supplemented with 1.5X branched chain amino acids (BCAAs) by replacing carbohydrate calories (ketogenic). The ketogenic diet induced hepatic lipid oxidation and ketogenesis, and produced multifaceted changes in flux through the individual steps of the TCA cycle. Higher rates of hepatic oxidative fluxes fueled by the ketogenic diet paralleled lower rates of de novo lipogenesis. Interestingly, this metabolic remodeling did not improve insulin resistance, but induced fibrogenic genes and inflammation in the liver. Under a chronic "ketogenic environment," the hepatocyte diverted more acetyl-CoA away from lipogenesis toward ketogenesis and TCA cycle, a milieu which can hasten oxidative stress and inflammation. In summary, chronic exposure to ketogenic environment during obesity and NAFLD has the potential to aggravate hepatic mitochondrial dysfunction.
引用
收藏
页码:14832 / 14849
页数:18
相关论文
共 54 条
[1]   Interest in the Ketogenic Diet Grows for Weight Loss and Type 2 Diabetes [J].
Abbasi, Jennifer .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 319 (03) :215-217
[2]   Ketogenic Diet-induced Elevated Cholesterol, Elevated Liver Enzymes and Potential Non-alcoholic Fatty Liver Disease [J].
Anekwe, Chika, V ;
Chandrasekaran, Poongodi ;
Stanford, Fatima C. .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2020, 12 (01)
[3]   Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements [J].
Antoniewicz, Maciek R. ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2006, 8 (04) :324-337
[4]   Mitochondrial Adaptations and Dysfunctions in Nonalcoholic Fatty Liver Disease [J].
Begriche, Karima ;
Massart, Julie ;
Robin, Marie-Anne ;
Bonnet, Fabrice ;
Fromenty, Bernard .
HEPATOLOGY, 2013, 58 (04) :1497-1507
[5]   Ketogenic, hypocaloric diet improves nonalcoholic steatohepatitis [J].
Belopolsky, Yuliya ;
Khan, Mohammad Q. ;
Sonnenberg, Amnon ;
Davidson, David J. ;
Fimmel, Claus J. .
JOURNAL OF TRANSLATIONAL INTERNAL MEDICINE, 2020, 8 (01) :26-31
[6]   Nonalcoholic steatohepatitis severity is defined by a failure in compensatory antioxidant capacity in the setting of mitochondrial dysfunction [J].
Boland, Michelle L. ;
Oldham, Stephanie ;
Boland, Brandon B. ;
Will, Sarah ;
Lapointe, Jean-Martin ;
Guionaud, Silvia ;
Rhodes, Christopher J. ;
Trevaskis, James L. .
WORLD JOURNAL OF GASTROENTEROLOGY, 2018, 24 (16) :1748-1765
[7]   Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: systematic review and consensus statement from the Italian Society of Endocrinology (SIE) [J].
Caprio, M. ;
Infante, M. ;
Moriconi, E. ;
Armani, A. ;
Fabbri, A. ;
Mantovani, G. ;
Mariani, S. ;
Lubrano, C. ;
Poggiogalle, E. ;
Migliaccio, S. ;
Donini, L. M. ;
Basciani, S. ;
Cignarelli, A. ;
Conte, E. ;
Ceccarini, G. ;
Bogazzi, F. ;
Cimino, L. ;
Condorelli, R. A. ;
La Vignera, S. ;
Calogero, A. E. ;
Gambineri, A. ;
Vignozzi, L. ;
Prodam, F. ;
Aimaretti, G. ;
Linsalata, G. ;
Buralli, S. ;
Monzani, F. ;
Aversa, A. ;
Vettor, R. ;
Santini, F. ;
Vitti, P. ;
Gnessi, L. ;
Pagotto, U. ;
Giorgino, F. ;
Colao, A. ;
Lenzi, A. ;
Beccuti, Guglielmo ;
Biondi, Bernadette ;
Cannavo, Salvatore ;
Chiodini, Iacopo ;
De Feudis, Giuseppe ;
Di Francesco, Simona ;
Di Gregorio, Aldo ;
Fallo, Francesco ;
Foresta, Carlo ;
Giacchetti, Gilberta ;
Granata, Riccarda ;
Isidori, Andrea M. ;
Magni, Paolo ;
Maiellaro, Pasquale .
JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION, 2019, 42 (11) :1365-1386
[8]   Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia [J].
Cotter, David G. ;
Ercal, Baris ;
Huang, Xiaojing ;
Leid, Jamison M. ;
d'Avignon, D. Andre ;
Graham, Mark J. ;
Dietzen, Dennis J. ;
Brunt, Elizabeth M. ;
Patti, Gary J. ;
Crawford, Peter A. .
JOURNAL OF CLINICAL INVESTIGATION, 2014, 124 (12) :5175-5190
[9]   Integrated 13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli [J].
Crown, Scott B. ;
Long, Christopher P. ;
Antoniewicz, Maciek R. .
METABOLIC ENGINEERING, 2015, 28 :151-158
[10]   Sources of hepatic triglyceride accumulation during high-fat feeding in the healthy rat [J].
Delgado, T. C. ;
Pinheiro, D. ;
Caldeira, M. ;
Castro, M. M. C. A. ;
Geraldes, C. F. G. C. ;
Lopez-Larrubia, P. ;
Cerdan, S. ;
Jones, J. G. .
NMR IN BIOMEDICINE, 2009, 22 (03) :310-317