A Linear Time Algorithm for Computing Longest Paths in 2-Trees

被引:0
作者
Markov, Minko [1 ]
Vassilev, Tzvetalin S. [2 ]
Manev, Krassimir [1 ]
机构
[1] Sofia Univ St Kliment Ohridski, Fac Math & Informat, Dept Comp Syst, BG-1164 Sofia, Bulgaria
[2] Nipissing Univ, Dept Comp Sci & Math, North Bay, ON P1B 8L7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
algorithmic graph theory; longest path; treewidth; 2-tree; LENGTH; GRAPH;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a practical linear time algorithm for the LONGEST PATH problem on 2-trees.
引用
收藏
页码:329 / 351
页数:23
相关论文
共 14 条
[1]   COLOR-CODING [J].
ALON, N ;
YUSTER, R ;
ZWICK, U .
JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY, 1995, 42 (04) :844-856
[2]  
[Anonymous], 1979, COMPUTERS INTRACTABI
[3]   Finding a path of superlogarithmic length [J].
Björklund, A ;
Husfeldt, T .
SIAM JOURNAL ON COMPUTING, 2003, 32 (06) :1395-1402
[4]  
Bodlaender Hans L., 1996, SIAM J COMPUT, V25, P1305
[5]  
Bodlaender Hans L., 1993, J ALGORITHMS, V14, P1
[6]   On computing a longest path in a tree [J].
Bulterman, RW ;
van den Sommen, FW ;
Zwaan, G ;
Verhoeff, T ;
van Gasteren, AJM ;
Feijen, WHJ .
INFORMATION PROCESSING LETTERS, 2002, 81 (02) :93-96
[7]  
Dorn F, 2008, PROCEEDINGS OF THE NINETEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P631
[8]  
Gabow HN, 2008, LECT NOTES COMPUT SC, V5369, P752, DOI 10.1007/978-3-540-92182-0_66
[9]   On approximating the longest path in a graph [J].
Karger, D ;
Motwani, R ;
Ramkumar, GDS .
ALGORITHMICA, 1997, 18 (01) :82-98
[10]  
Markov M., 2012, SERDICA J COMPUT, V6, P287