New inhibitor targeting Acyl-CoA synthetase 4 reduces breast and prostate tumor growth, therapeutic resistance and steroidogenesis

被引:53
作者
Castillo, Ana F. [1 ,2 ]
Orlando, Ulises D. [1 ,2 ]
Maloberti, Paula M. [1 ,2 ]
Prada, Jesica G. [1 ,2 ]
Dattilo, Melina A. [1 ,2 ]
Solano, Angela R. [1 ,2 ]
Bigi, Maria M. [1 ,2 ]
Rios Medrano, Mayra A. [1 ,2 ]
Torres, Maria T. [3 ]
Indo, Sebastian [3 ]
Caroca, Graciela [3 ]
Contreras, Hector R. [3 ]
Marelli, Belkis E. [4 ]
Salinas, Facundo J. [4 ]
Salvetti, Natalia R. [4 ]
Ortega, Hugo H. [4 ]
Lorenzano Menna, Pablo [5 ]
Szajnman, Sergio [6 ,7 ]
Gomez, Daniel E. [5 ]
Rodriguez, Juan B. [6 ,7 ]
Podesta, Ernesto J. [1 ,2 ]
机构
[1] Univ Buenos Aires, CONICET, Inst Invest Biomed INBIOMED, Paraguay 2155 C1121ABG, Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Fac Med, Dept Bioquim Humana, Buenos Aires, DF, Argentina
[3] Univ Chile, Fac Med, Dept Oncol Basico Clin, Santiago, Chile
[4] Univ Nacl Litoral, CONICET, Inst Ciencias Vet Litoral ICiVet Litoral, Esperanza, Santa Fe, Argentina
[5] Univ Nacl Quilmes, Dept Ciencia & Tecnol, Lab Oncol Mol, Bernal, Buenos Aires, Argentina
[6] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Quim Organ, Buenos Aires, DF, Argentina
[7] Univ Buenos Aires, CONICET, Unidad Microanal & Metodos Fis Aplicados Quim Org, Buenos Aires, DF, Argentina
关键词
Triple negative breast cancer; Castration resistant prostate cancer; Anti-hormone treatment resistance; Chemotherapy resistance; ARACHIDONIC-ACID; TRIACSIN-C; MOLECULAR PORTRAITS; LIPID-METABOLISM; PROTEIN-KINASE; CHAIN; EXPRESSION; CANCER; CELLS; MITOCHONDRIA;
D O I
10.1007/s00018-020-03679-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Acyl-CoA synthetase 4 (ACSL4) is an isoenzyme of the fatty acid ligase-coenzyme-A family taking part in arachidonic acid metabolism and steroidogenesis. ACSL4 is involved in the development of tumor aggressiveness in breast and prostate tumors through the regulation of various signal transduction pathways. Here, a bioinformatics analysis shows that the ACSL4 gene expression and proteomic signatures obtained using a cell model was also observed in tumor samples from breast and cancer patients. A well-validated ACSL4 inhibitor, however, has not been reported hindering the full exploration of this promising target and its therapeutic application on cancer and steroidogenesis inhibition. In this study, ACSL4 inhibitor PRGL493 was identified using a homology model for ACSL4 and docking based virtual screening. PRGL493 was then chemically characterized through nuclear magnetic resonance and mass spectroscopy. The inhibitory activity was demonstrated through the inhibition of arachidonic acid transformation into arachidonoyl-CoA using the recombinant enzyme and cellular models. The compound blocked cell proliferation and tumor growth in both breast and prostate cellular and animal models and sensitized tumor cells to chemotherapeutic and hormonal treatment. Moreover, PGRL493 inhibited de novo steroid synthesis in testis and adrenal cells, in a mouse model and in prostate tumor cells. This work provides proof of concept for the potential application of PGRL493 in clinical practice. Also, these findings may prove key to therapies aiming at the control of tumor growth and drug resistance in tumors which express ACSL4 and depend on steroid synthesis.
引用
收藏
页码:2893 / 2910
页数:18
相关论文
共 68 条
[1]   AZT exerts its antitumoral effect by telomeric and non-telomeric effects in a mammary adenocarcinoma model [J].
Armando, Romina G. ;
Mengual Gomez, Diego ;
Gomez, Daniel E. .
ONCOLOGY REPORTS, 2016, 36 (05) :2731-2736
[2]  
ASCOLI M, 1981, J BIOL CHEM, V256, P179
[3]   Rosiglitazone inhibits acyl-CoA synthetase activity and fatty acid partitioning to diacylglycerol and triacylglycerol via a peroxisome proliferator-activated receptor-γ-independent mechanism in human arterial smooth muscle cells and macrophages [J].
Askari, Bardia ;
Kanter, Jenny E. ;
Sherrid, Ashley M. ;
Golej, Deidre L. ;
Bender, Andrew T. ;
Liu, Joey ;
Hsueh, Willa A. ;
Beavo, Joseph A. ;
Coleman, Rosalind A. ;
Bornfeldt, Karin E. .
DIABETES, 2007, 56 (04) :1143-1152
[4]   Ca2+-dependent permeabilization of mitochondria and liposomes by palmitic and oleic acids: A comparative study [J].
Belosludtsev, Konstantin N. ;
Belosludtseva, Natalia V. ;
Agafonov, Alexey V. ;
Astashev, Maxim E. ;
Kazakov, Alexey S. ;
Saris, Nils-Erik L. ;
Mironova, Galina D. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2014, 1838 (10) :2600-2606
[5]  
Cao Y, 2001, CANCER RES, V61, P8429
[6]   The Metabolism, Analysis, and Targeting of Steroid Hormones in Breast and Prostate Cancer [J].
Capper, Cameron P. ;
Rae, James M. ;
Auchus, Richard J. .
HORMONES & CANCER, 2016, 7 (03) :149-164
[7]  
Castillo A.F., 2015, Transcr Open Access, V3, P1, DOI [10.4172/2329-8936.1000120, DOI 10.4172/2329-8936.1000120]
[8]   cAMP increases mitochondrial cholesterol transport through the induction of arachidonic acid release inside this organelle in Leydig cells [J].
Castillo, Ana Fernanda ;
Maciel, Fabiana Cornejo ;
Castilla, Rocio ;
Duarte, Alejandra ;
Maloberti, Paula ;
Paz, Cristina ;
Podesta, Ernesto J. .
FEBS JOURNAL, 2006, 273 (22) :5011-5021
[9]  
CHASALOW F, 1979, J BIOL CHEM, V254, P5613
[10]   Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer [J].
Ciriello, Giovanni ;
Gatza, Michael L. ;
Beck, Andrew H. ;
Wilkerson, Matthew D. ;
Rhie, Suhn K. ;
Pastore, Alessandro ;
Zhang, Hailei ;
McLellan, Michael ;
Yau, Christina ;
Kandoth, Cyriac ;
Bowlby, Reanne ;
Shen, Hui ;
Hayat, Sikander ;
Fieldhouse, Robert ;
Lester, Susan C. ;
Tse, Gary M. K. ;
Factor, Rachel E. ;
Collins, Laura C. ;
Allison, Kimberly H. ;
Chen, Yunn-Yi ;
Jensen, Kristin ;
Johnson, Nicole B. ;
Oesterreich, Steffi ;
Mills, Gordon B. ;
Cherniack, Andrew D. ;
Robertson, Gordon ;
Benz, Christopher ;
Sander, Chris ;
Laird, Peter W. ;
Hoadley, Katherine A. ;
King, Tari A. ;
Perou, Charles M. .
CELL, 2015, 163 (02) :506-519