A position-dependent mass harmonic oscillator and deformed space

被引:47
作者
da Costa, Bruno G. [1 ,2 ]
Borges, Ernesto P. [2 ,3 ]
机构
[1] Inst Fed Educ Ciencia & Tecnol Sertao Pernambucan, Campus Petrolina,BR 407,Km 08, BR-56314520 Petrolina, PE, Brazil
[2] Univ Fed Bahia, Inst Fis, Rua Barao de Jeremoabo, BR-40170115 Salvador, BA, Brazil
[3] Natl Inst Sci & Technol Complex Syst, Rua Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil
关键词
QUANTUM; ALGEBRA;
D O I
10.1063/1.5020225
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider canonically conjugated generalized space and linear momentumoperators (x) over cap (q) and (p) over cap (q) in quantum mechanics, associated with a generalized translation operator which produces infinitesimal deformed displacements controlled by a deformation parameter q. A canonical transformation ((x) over cap, (p) over cap) -> ((x) over cap (q) , (p) over cap (q)) leads the Hamiltonian of a position-dependent mass particle in usual space to another Hamiltonian of a particle with constant mass in a conservative force field of the deformed space. The equation of motion for the classical phase space (x, p) may be expressed in terms of the deformed (dual) q-derivative. We revisit the problem of a q-deformed oscillator in both classical and quantum formalisms. Particularly, this canonical transformation leads a particle with position-dependent mass in a harmonic potential to a particle with constant mass in a Morse potential. The trajectories in phase spaces (x, p) and (x(q), p(q)) are analyzed for different values of the deformation parameter. Finally, we compare the results of the problem in classical and quantum formalisms through the principle of correspondence and the WKB approximation. Published by AIP Publishing.
引用
收藏
页数:15
相关论文
共 45 条
[1]   Algebraic solutions of shape-invariant position-dependent effective mass systems [J].
Amir, Naila ;
Iqbal, Shahid .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (06)
[2]  
[Anonymous], 1994, Quimica Nova
[3]  
[Anonymous], 2009, SPRINGER
[4]   The inversion potential for NH3 using a DFT approach [J].
Aquino, N ;
Campoy, G ;
Yee-Madeira, H .
CHEMICAL PHYSICS LETTERS, 1998, 296 (1-2) :111-116
[5]   Effective Mass Quantum Systems with Displacement Operator: Inverse Square Plus Coulomb-Like Potential [J].
Arda, Altug ;
Sever, Ramazan .
FEW-BODY SYSTEMS, 2015, 56 (10) :697-702
[6]   Quantum confinement in nonadditive space with a spatially dependent effective mass for Si and Ge quantum wells [J].
Barbagiovanni, E. G. ;
Costa Filho, R. N. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 63 :14-20
[7]   Role of quantum confinement in luminescence efficiency of group IV nanostructures [J].
Barbagiovanni, E. G. ;
Lockwood, D. J. ;
Rowell, N. L. ;
Costa Filho, R. N. ;
Berbezier, I. ;
Amiard, G. ;
Favre, L. ;
Ronda, A. ;
Faustini, M. ;
Grosso, D. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (04)
[8]   POSSIBLE EXPLANATION OF THE SOLAR-NEUTRINO PUZZLE [J].
BETHE, HA .
PHYSICAL REVIEW LETTERS, 1986, 56 (12) :1305-1308
[9]   THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS [J].
BIEDENHARN, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L873-L878
[10]   A possible deformed algebra and calculus inspired in nonextensive thermostatistics [J].
Borges, EP .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 340 (1-3) :95-101