Classification of Generalized Kahler-Ricci Solitons on Complex Surfaces

被引:15
作者
Streets, Jeffrey [1 ]
Ustinovskiy, Yury [2 ]
机构
[1] Univ Calif Irvine, Rowland Hall, Irvine, CA 92617 USA
[2] Courant Inst, 251 Mercer St,Room 827, New York, NY 10012 USA
关键词
BIHERMITIAN STRUCTURES; GEOMETRY;
D O I
10.1002/cpa.21947
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using toric geometry we give an explicit construction of the compact steady solitons for pluriclosed flow first constructed in by the first author in 2019. This construction also reveals that these solitons are generalized Kahler in two distinct ways, with vanishing and nonvanishing Poisson structure. This gives the first examples of generalized Kahler structures with nonvanishing Poisson structure on nonstandard Hopf surfaces, completing the existence question for such structures. Moreover, this gives a complete answer to the existence question for generalized Kahler-Ricci solitons on compact complex surfaces. In the setting of generalized Kahler geometry with vanishing Poisson structure, we show that these solitons are unique. We show that these solitons are global attractors for the generalized Kahler-Ricci flow among metrics with maximal symmetry. (c) 2020 Wiley Periodicals LLC
引用
收藏
页码:1896 / 1914
页数:19
相关论文
共 19 条
[1]   Bihermitian structures on complex surfaces [J].
Apostolov, V ;
Gauduchon, P ;
Grantcharov, G .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1999, 79 :414-428
[2]  
Apostolov V., 2017, PREPRINT
[3]   Generalized Kahler manifolds, commuting complex structures, and split tangent bundles [J].
Apostolov, Vestislav ;
Gualtieri, Marco .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (02) :561-575
[4]   Twistors and Bi-Hermitian Surfaces of Non-Kahler Type [J].
Fujiki, Akira ;
Pontecorvo, Massimiliano .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2014, 10
[5]  
Fujiki A, 2010, J DIFFER GEOM, V85, P15, DOI 10.4310/jdg/1284557925
[6]  
Gualtieri M., 2003, Generalized complex geometry
[7]   Generalized Kahler Geometry [J].
Gualtieri, Marco .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (01) :297-331
[8]   ANTI-SELF-DUAL HERMITIAN METRICS ON BLOWN-UP HOPF SURFACES [J].
LEBRUN, C .
MATHEMATISCHE ANNALEN, 1991, 289 (03) :383-392
[9]  
Namba M., 1974, TOHOKU MATH J, V26, P133, DOI DOI 10.2748/TMJ/1178241239
[10]   Complex structures on Riemannian four-manifolds [J].
Pontecorvo, M .
MATHEMATISCHE ANNALEN, 1997, 309 (01) :159-177