Numerical prediction of the unsteady temperature distribution in a cooling cabinet

被引:12
作者
Alfaro-Ayala, J. Arturo [1 ]
Uribe-Ramirez, Agustin R. [1 ]
Minchaca-Mojica, J. Isaac [1 ]
Ramirez-Minguela, J. de J. [1 ]
Alvarado-Alcala, B. Uciel [1 ]
Lopez-Nunez, Oscar A. [1 ]
机构
[1] Univ Guanajuato, DCNE, Dept Chem Engn, Col Noria Alta S-N, Guanajuato 36050, Gto, Mexico
来源
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID | 2017年 / 73卷
关键词
Cooling cabinet; Boussinesq approximation; Temperature polynomials; Unsteady state; CFD simulations; Refrigeration; NATURAL-CONVECTION; HEAT-TRANSFER; PERFORMANCE; REFRIGERATORS; DESIGN; CAVITY; SYSTEM; FLOW;
D O I
10.1016/j.ijrefrig.2016.09.022
中图分类号
O414.1 [热力学];
学科分类号
摘要
An unsteady state numerical study of a small cooling cabinet, using Computational Fluid Dynamics (CFD), is presented in this work. Three different cooling levels are simulated until 3.5 h of operational time is reached. The prediction of the temperature and the velocity distributions of the air inside the cooling cabinet is obtained using three different models: a) the use of constant properties (CP), b) the approximation of all the properties fitted to temperature polynomials (PFTP) and c) the variation of the density with temperature according to the Boussinesq approximation (BA). The CFD numerical results were validated against experimental data. It was concluded that both PFTP and BA models are good approaches to predict the unsteady temperature inside the cooling cabinet. (C) 2016 Elsevier Ltd and IIR. All rights reserved.
引用
收藏
页码:235 / 245
页数:11
相关论文
共 27 条
[1]   The novel use of phase change materials in a refrigerated display cabinet: An experimental investigation [J].
Alzuwaid, F. ;
Ge, Y. T. ;
Tassou, S. A. ;
Raeisi, A. ;
Gowreesunker, L. .
APPLIED THERMAL ENGINEERING, 2015, 75 :770-778
[2]  
[Anonymous], 1980, Numerical heat transfer and fluid flow
[3]  
ANSYS Inc., 2015, FLUENT ANSYS FLUENT
[4]   Steady-state model of a variable speed vapor compression system using R134a as working fluid [J].
Belman, J. M. ;
Navarro-Esbri, J. ;
Ginestar, D. ;
Milian, V. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2010, 34 (11) :933-945
[5]   Analysis of the flow and temperature distribution inside the compartment of a small refrigerator [J].
Belman-Flores, J. M. ;
Gallegos-Munoz, A. .
APPLIED THERMAL ENGINEERING, 2016, 106 :743-752
[6]   Energetic analysis of a diffusion-absorption system: A bubble pump under geometrical and operational conditions effects [J].
Belman-Flores, J. M. ;
Rodriguez-Munoz, J. L. ;
Rubio-Maya, C. ;
Ramirez-Minguela, J. J. ;
Perez-Garcia, V. .
APPLIED THERMAL ENGINEERING, 2014, 71 (01) :1-10
[7]   Analysis of the temperature stratification of a no-frost domestic refrigerator with bottom mount configuration [J].
Belman-Flores, J. M. ;
Gallegos-Munoz, A. ;
Puente-Delgado, A. .
APPLIED THERMAL ENGINEERING, 2014, 65 (1-2) :299-307
[8]   A numerical investigation of a diffusion-absorption refrigeration cycle based on R124-DMAC mixture for solar cooling [J].
Ben Ezzine, N. ;
Garma, R. ;
Bellagi, A. .
ENERGY, 2010, 35 (05) :1874-1883
[9]   Experimental studies on bubble pump operated diffusion absorption machine based on light hydrocarbons for solar cooling [J].
Ben Ezzine, N. ;
Garma, R. ;
Bourouis, M. ;
Bellagi, A. .
RENEWABLE ENERGY, 2010, 35 (02) :464-470
[10]  
Cengel Y., 2011, HEAT MASS TRANSFER