共 25 条
Contribution of the Staphylococcus aureus Atl AM and GL Murein Hydrolase Activities in Cell Division, Autolysis, and Biofilm Formation
被引:159
作者:
Bose, Jeffrey L.
[1
]
Lehman, McKenzie K.
[1
]
Fey, Paul D.
[1
]
Bayles, Kenneth W.
[1
]
机构:
[1] Univ Nebraska Med Ctr, Dept Pathol & Microbiol, Omaha, NE USA
来源:
基金:
美国国家卫生研究院;
关键词:
L-ALANINE AMIDASE;
BETA-N-ACETYLGLUCOSAMINIDASE;
PENICILLIN TOLERANCE;
SEQUENCE-ANALYSIS;
DNA RELEASE;
ENZYMES;
IDENTIFICATION;
EPIDERMIDIS;
SEPARATION;
DOMAINS;
D O I:
10.1371/journal.pone.0042244
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The most prominent murein hydrolase of Staphylococcus aureus, AtlA, is a bifunctional enzyme that undergoes proteolytic cleavage to yield two catalytically active proteins, an amidase (AM) and a glucosaminidase (GL). Although the bifunctional nature of AtlA has long been recognized, most studies have focused on the combined functions of this protein in cell wall metabolism and biofilm development. In this study, we generated mutant derivatives of the clinical S. aureus isolate, UAMS-1, in which one or both of the AM and GL domains of AtlA have been deleted. Examination of these strains revealed that each mutant exhibited growth rates comparable to the parental strain, but showed clumping phenotypes and lysis profiles that were distinct from the parental strain and each other, suggesting distinct roles in cell wall metabolism. Given the known function of autolysis in the release of genomic DNA for use as a biofilm matrix molecule, we also tested the mutants in biofilm assays and found both AM and GL necessary for biofilm development. Furthermore, the use of enzymatically inactive point mutations revealed that both AM and GL must be catalytically active for S. aureus to form a biofilm. The results of this study provide insight into the relative contributions of AM and GL in S. aureus and demonstrate the contribution of Atl-mediated lysis in biofilm development.
引用
收藏
页数:11
相关论文