Numerical methods for solving the multi-term time-fractional wave-diffusion equation

被引:296
|
作者
Liu, Fawang [1 ]
Meerschaert, Mark M. [2 ]
McGough, Robert J. [3 ]
Zhuang, Pinghui [4 ]
Liu, Qingxia [4 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[4] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
澳大利亚研究理事会;
关键词
multi-term time fractional wave-diffusion equations; Caputo derivative; a power law wave equation; finite difference method; fractional predictor-corrector method; FREQUENCY POWER-LAW; ANOMALOUS SUBDIFFUSION EQUATION; NONLINEAR SOURCE-TERM; DOMAIN; MEDIA; APPROXIMATIONS; STABILITY; MODELS;
D O I
10.2478/s13540-013-0002-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.
引用
收藏
页码:9 / 25
页数:17
相关论文
共 50 条
  • [1] Numerical methods for solving the multi-term time-fractional wave-diffusion equation
    Fawang Liu
    Mark M. Meerschaert
    Robert J. McGough
    Pinghui Zhuang
    Qingxia Liu
    Fractional Calculus and Applied Analysis, 2013, 16 : 9 - 25
  • [2] Effective Modified Fractional Reduced Differential Transform Method for Solving Multi-Term Time-Fractional Wave-Diffusion Equations
    Al-rabtah, Adel
    Abuasad, Salah
    SYMMETRY-BASEL, 2023, 15 (09):
  • [3] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    A. S. V. Ravi Kanth
    Neetu Garg
    The European Physical Journal Plus, 134
  • [4] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    Kanth, A. S. V. Ravi
    Garg, Neetu
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06):
  • [5] Fully discrete spectral method for solving a novel multi-term time-fractional mixed diffusion and diffusion-wave equation
    Liu, Yanqin
    Sun, HongGuang
    Yin, Xiuling
    Feng, Libo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):
  • [6] Numerical methods for the two-dimensional multi-term time-fractional diffusion equations
    Zhao, Linlin
    Liu, Fawang
    Anh, Vo V.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) : 2253 - 2268
  • [7] Fully discrete spectral method for solving a novel multi-term time-fractional mixed diffusion and diffusion-wave equation
    Yanqin Liu
    HongGuang Sun
    Xiuling Yin
    Libo Feng
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [8] A Local Radial Basis Function Method for Numerical Approximation of Multidimensional Multi-Term Time-Fractional Mixed Wave-Diffusion and Subdiffusion Equation Arising in Fluid Mechanics
    Gul, Ujala
    Khan, Zareen A.
    Haque, Salma
    Mlaiki, Nabil
    FRACTAL AND FRACTIONAL, 2024, 8 (11)
  • [9] Efficient Numerical Solution of the Multi-Term Time Fractional Diffusion-Wave Equation
    Ren, Jincheng
    Sun, Zhi-Zhong
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2015, 5 (01) : 1 - 28
  • [10] Simultaneous inversion of the potential term and the fractional orders in a multi-term time-fractional diffusion equation
    Sun, L. L.
    Li, Y. S.
    Zhang, Y.
    INVERSE PROBLEMS, 2021, 37 (05)