RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL BOUNDARY CONDITIONS

被引:0
|
作者
Ahmad, Bashir [1 ]
Nieto, Juan J. [2 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15782, Spain
来源
FIXED POINT THEORY | 2012年 / 13卷 / 02期
关键词
Riemann-Liouville calculus; fractional differential equations; fractional boundary conditions; fixed point theorems; anti-periodic boundary conditions; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a class of Riemann-Liouville fractional differential equations with fractional boundary conditions. Some new existence results are obtained by applying standard fixed point theorems.
引用
收藏
页码:329 / 336
页数:8
相关论文
共 50 条
  • [1] Riemann-Liouville fractional differential equations with Hadamard fractional integral conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Thiramanus, Phollakrit
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2016, 54 (01): : 119 - 134
  • [2] Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
    Ahmad, Bashir
    Nieto, Juan J.
    BOUNDARY VALUE PROBLEMS, 2011, : 1 - 9
  • [3] Coupled systems of Riemann-Liouville fractional differential equations with Hadamard fractional integral boundary conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (01): : 295 - 308
  • [4] Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
    Bashir Ahmad
    Juan J Nieto
    Boundary Value Problems, 2011
  • [5] On a system of Riemann-Liouville fractional differential equations with coupled nonlocal boundary conditions
    Luca, Rodica
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [6] Ulam Stability of Fractional Impulsive Differential Equations with Riemann-Liouville Integral Boundary Conditions
    Abbas, Mohamed I.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2015, 50 (05): : 209 - 219
  • [7] ON A COUPLED SYSTEM OF FRACTIONAL ORDER DIFFERENTIAL EQUATIONS WITH RIEMANN-LIOUVILLE TYPE BOUNDARY CONDITIONS
    Raju, V. V. R. R. B.
    Krushna, B. M. B.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2018,
  • [8] Ulam stability of fractional impulsive differential equations with Riemann-Liouville integral boundary conditions
    Mohamed I. Abbas
    Journal of Contemporary Mathematical Analysis, 2015, 50 : 209 - 219
  • [9] Caputo type fractional differential equations with nonlocal Riemann-Liouville integral boundary conditions
    Ahmad B.
    Ntouyas S.K.
    Assolami A.
    Journal of Applied Mathematics and Computing, 2013, 41 (1-2) : 339 - 350
  • [10] Analysis of Caputo Sequential Fractional Differential Equations with Generalized Riemann-Liouville Boundary Conditions
    Gunasekaran, Nallappan
    Manigandan, Murugesan
    Vinoth, Seralan
    Vadivel, Rajarathinam
    FRACTAL AND FRACTIONAL, 2024, 8 (08)