Comparing ignitability for in situ burning of oil spills for an asphaltenic, a waxy and a light crude oil as a function of weathering conditions under arctic conditions

被引:25
作者
Fritt-Rasmussen, Janne [1 ]
Brandvik, Per Johan [2 ]
Villumsen, Arne [1 ]
Stenby, Erling H. [3 ]
机构
[1] Tech Univ Denmark, Arctic Technol Ctr, DK-2800 Lyngby, Denmark
[2] SINTEF Mat & Chem, Marine Environm Technol, N-7465 Trondheim, Norway
[3] Tech Univ Denmark, Ctr Energy Resources Engn, DK-2800 Lyngby, Denmark
关键词
Oil spill; In situ burning; Weathering; Arctic; Laboratory experiments; Crude oils; EMULSIONS; SEA;
D O I
10.1016/j.coldregions.2011.12.001
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In situ burning of oil spills in the Arctic is a promising countermeasure. In spite of the research already conducted more knowledge is needed especially regarding burning of weathered oils. This paper uses a new laboratory burning cell (100 mL sample) to test three Norwegian crude oils, Grane (asphalthenic), Kobbe (light oil) and Norne (waxy), for ignitability as a function of ice conditions and weathering degree. The crude oils (9 L) were weathered in a laboratory basin (4.8 m(3)) under simulated arctic conditions (0, 50 and 90% ice cover). The laboratory burning tests show that the ignitability is dependent on oil composition, ice conditions and weathering degree. In open water, oil spills rapidly become "not ignitable" due to the weathering e.g. high water content and low content of residual volatile components. The slower weathering of oil spills in ice (50 and 90% ice cover) results in longer time-windows for the oil to be ignitable. The composition of the oils is important for the window of opportunity. The asphalthenic Crane crude oil had a limited time-window for in situ burning (9 h or less), while the light Kobbe crude oil and the waxy Norne crude oil had the longest time-windows for in situ burning (from 18 h to more than 72 h). Such information regarding time windows for using in situ burning is very important for both contingency planning and operational use of in situ burning. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 27 条
[1]  
[Anonymous], D134798 ASTM INT
[2]  
[Anonymous], 1992, D9787 ASTM, V05.01, P57
[3]  
[Anonymous], P 9 ANN ARCT MAR OIL
[4]  
Brandvik P.J., 2010, P 33 AMOP TECHN SEM, V2, P773
[5]  
Brandvik P.J., 2010, P 33 ARCT MAR OILSP, V2, P755
[6]  
Brandvik P.J., 2010, A15563 SINTEF MAT CH
[7]  
Brandvik P.J., 2010, P 33 AMOP TECH SEM E, P701
[8]   Window-of-opportunity for in situ burning [J].
Buist, I .
SPILL SCIENCE & TECHNOLOGY BULLETIN, 2003, 8 (04) :341-346
[9]  
Buist I. A., 1994, MSRC TECHNICAL REPOR
[10]  
Buist I.A., 1985, P 8 ANN ARCT MAR OIL, P103