Feedback Control on Nash Equilibrium for Discrete-Time Stochastic Systems with Markovian Jumps: Finite-Horizon Case

被引:3
作者
Sun, Huiying [1 ]
Jiang, Liuyang [1 ]
Zhang, Weihai [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Informat & Elect Engn, Key Lab Robot & Intelligent Technol Shandong Prov, Qingdao 266510, Shandong, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Discrete-time stochastic systems; feedback control; generalized difference Riccati equations; linear quadratic differential games; Markovian jumps; nonzero-sum; MULTIPLICATIVE NOISE;
D O I
10.1007/s12555-012-0510-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the feedback control on nonzero-sum linear quadratic (LQ) differential games in finite horizon for discrete-time stochastic systems with Markovian jump parameters and multiplicative noise. Four-coupled generalized difference Riccati equations (GDREs) are obtained, which are essential to find the optimal Nash equilibrium strategies and the optimal cost values of the LQ differential games. Furthermore, an iterative algorithm is given to solve the four-coupled GDREs. Finally, a suboptimal solution of the LQ differential games is proposed based on a convex optimization approach and a simplification of the suboptimal solution is given. Simulation examples are presented to illustrate the effectiveness of the iterative algorithm and the suboptimal solution.
引用
收藏
页码:940 / 946
页数:7
相关论文
共 17 条
[1]  
Aarle B.V., 2003, Journal of Economics Business, V55, P609
[2]  
Ben-Tal A., 2001, Lectures on modern convex optimization, V2
[3]   LINEAR-QUADRATIC, 2-PERSON, ZERO-SUM DIFFERENTIAL GAMES - NECESSARY AND SUFFICIENT CONDITIONS [J].
BERNHARD, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1979, 27 (01) :51-69
[4]   Constrained Stochastic LQC: A tractable approach [J].
Bertsimas, Dimitris ;
Brown, David B. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (10) :1826-1841
[5]   ROBUST PRODUCTION AND MAINTENANCE PLANNING IN STOCHASTIC MANUFACTURING SYSTEMS [J].
BOUKAS, EK ;
ZHANG, Q ;
YIN, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (06) :1098-1102
[6]  
Costa OLV, 2005, DISCRETE TIME MARKOV
[7]   Indefinite quadratic with linear costs optimal control of Markov jump with multiplicative noise systems [J].
Costa, Oswaldo L. V. ;
de Paulo, Wanderlei L. .
AUTOMATICA, 2007, 43 (04) :587-597
[8]   Predictive control of random-parameter systems with multiplicative noise. Application to investment portfolio optimization [J].
Dombrovskii, VV ;
Dombrovskii, DV ;
Lyashenko, EA .
AUTOMATION AND REMOTE CONTROL, 2005, 66 (04) :583-595
[9]   The linear quadratic optimization problems for a class of linear stochastic systems with multiplicative white noise and Markovian jumping [J].
Dragan, V ;
Morozan, T .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (05) :665-675
[10]   The open-loop linear quadratic differential game for index one descriptor systems [J].
Engwerda, J. C. ;
Salmah .
AUTOMATICA, 2009, 45 (02) :585-592