Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces

被引:58
作者
Debbouche, Amar [1 ,2 ]
Torres, Delfim F. M. [2 ]
机构
[1] Guelma Univ, Dept Math, Guelma, Algeria
[2] Univ Aveiro, Dept Math, CIDMA Ctr Res & Dev Math & Applicat, P-3810193 Aveiro, Portugal
关键词
approximate controllability; fractional multi-delay control system; fractional nonlocal condition; Schauder's fixed point theorem; semigroups; EVOLUTION-EQUATIONS; EXISTENCE; ENERGY;
D O I
10.1080/00207179.2013.791927
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the existence and approximate controllability of a class of fractional nonlocal delay semilinear differential systems in a Hilbert space. The results are obtained by using semigroup theory, fractional calculus and Schauder's fixed point theorem. Multi-delay controls and a fractional nonlocal condition are introduced. Furthermore, we present an appropriate set of sufficient conditions for the considered fractional nonlocal multi-delay control system to be approximately controllable. An example to illustrate the abstract results is given.
引用
收藏
页码:1577 / 1585
页数:9
相关论文
共 42 条
[1]   On the concept of solution for fractional differential equations with uncertainty [J].
Agarwal, Ravi P. ;
Lakshmikantham, V. ;
Nieto, Juan J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :2859-2862
[2]  
[Anonymous], 2010, ADV DYN SYST APPL
[3]  
ARJUNAN M. MALLIKA, 2011, Journal of the Korean Society for Industrial and Applied Mathematics, V15, P177
[4]   On concepts of controllability for deterministic and stochastic systems [J].
Bashirov, AE ;
Mahmudov, NI .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (06) :1808-1821
[5]   THEOREMS ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EVOLUTION NONLOCAL CAUCHY-PROBLEM [J].
BYSZEWSKI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) :494-505
[6]  
Byszewski L., 1991, Appl. Anal, V40, P173, DOI [10.1080/00036819108840001, DOI 10.1080/00036819108840001]
[7]  
Debbouche A., 2011, J NONLINEAR EVOLUT E, V2011, P91
[8]  
Debbouche A., 2009, ELECT J DIFFERENTIAL, V2009
[9]   Nonlocal nonlinear integrodifferential equations of fractional orders [J].
Debbouche, Amar ;
Baleanu, Dumitru ;
Agarwal, Ravi P. .
BOUNDARY VALUE PROBLEMS, 2012,
[10]   Exact Null Controllability for Fractional Nonlocal Integrodifferential Equations via Implicit Evolution System [J].
Debbouche, Amar ;
Baleanu, Dumitru .
JOURNAL OF APPLIED MATHEMATICS, 2012,