CYCLICITY OF THE ORIGIN IN SLOW-FAST CODIMENSION 3 SADDLE AND ELLIPTIC BIFURCATIONS

被引:6
作者
Huzak, Renato [1 ]
机构
[1] Hasselt Univ, B-3590 Diepenbeek, Belgium
关键词
LIENARD EQUATIONS; CANARD CYCLES; LIMIT-CYCLES; UNIQUENESS;
D O I
10.3934/dcds.2016.36.171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is the continuation of our previous papers [16] and [17] where we studied small-amplitude limit cycles in slow-fast codimension 3 saddle and elliptic bifurcations. We find optimal upper bounds for the number of small-amplitude limit cycles in these slow-fast codimension 3 bifurcations. We use techniques from geometric singular perturbation theory.
引用
收藏
页码:171 / 215
页数:45
相关论文
共 21 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
Arnold V.I., 2012, Monodromy and asymptotics of integrals, V2
[3]  
Coppel W.A, 1989, Dynamics Reported, V2, P61
[4]   Time analysis and entry-exit relation near planar turning points [J].
De Maesschalck, P ;
Dumortier, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 215 (02) :225-267
[5]   Slow-fast Bogdanov-Takens bifurcations [J].
De Maesschalck, P. ;
Dumortier, F. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (02) :1000-1025
[6]   Singular perturbations and vanishing passage through a turning point [J].
De Maesschalck, P. ;
Dumortier, F. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (09) :2294-2328
[7]   DETECTABLE CANARD CYCLES WITH SINGULAR SLOW DYNAMICS OF ANY ORDER AT THE TURNING POINT [J].
De Maesschalck, Peter ;
Dumortier, Freddy .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (01) :109-140
[8]   CUBIC LIENARD EQUATIONS WITH LINEAR DAMPING [J].
DUMORTIER, F ;
ROUSSEAU, C .
NONLINEARITY, 1990, 3 (04) :1015-1039
[9]   On the uniqueness of limit cycles surrounding one or more singularities for Lienard equations [J].
Dumortier, F ;
Li, CZ .
NONLINEARITY, 1996, 9 (06) :1489-1500