On a Laminated Timoshenko Beam with Nonlinear Structural Damping

被引:22
作者
Apalara, Tijani A. [1 ]
Nass, Aminu M. [2 ]
Al Sulaimani, Hamdan [1 ]
机构
[1] Univ Hafr Al Batin UHB, Dept Math, Hafar al Batin 31991, Saudi Arabia
[2] Fed Univ Dutse FUD, Dept Actuarial Sci, PMB 7156, Dutse, Jigawa State, Nigeria
关键词
laminated beams; nonlinear damping; general decay; multiplier method; EXPONENTIAL STABILIZATION; STABILITY; DECAY;
D O I
10.3390/mca25020035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present work, we study a one-dimensional laminated Timoshenko beam with a single nonlinear structural damping due to interfacial slip. We use the multiplier method and some properties of convex functions to establish an explicit and general decay result. Interestingly, the result is established without any additional internal or boundary damping term and without imposing any restrictive growth assumption on the nonlinear term, provided the wave speeds of the first equations of the system are equal.
引用
收藏
页数:11
相关论文
共 29 条
[1]   Exponential stability of laminated Timoshenko beams with boundary/internal controls [J].
Alves, M. S. ;
Monteiro, R. N. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (01)
[2]  
[Anonymous], 2015, ELECTRON J DIFFER EQ
[3]   Exponential stability for laminated beams with a frictional damping [J].
Apalara, Tijani A. ;
Raposo, Carlos A. ;
Nonato, Carlos A. S. .
ARCHIV DER MATHEMATIK, 2020, 114 (04) :471-480
[4]   On the Stability of a Thermoelastic Laminated Beam [J].
Apalara, Tijani A. .
ACTA MATHEMATICA SCIENTIA, 2019, 39 (06) :1517-1524
[5]   Uniform stability of a laminated beam with structural damping and second sound [J].
Apalara, Tijani A. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (02)
[6]   Artificial boundary condition for a modified fractional diffusion problem [J].
Awotunde, Abeeb A. ;
Ghanam, Ryad A. ;
Tatar, Nasser-eddine .
BOUNDARY VALUE PROBLEMS, 2015, :1-17
[7]   Easy test for stability of laminated beams with structural damping and boundary feedback controls [J].
Cao, Xue-Guang ;
Liu, Dong-Yi ;
Xu, Gen-Qi .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2007, 13 (03) :313-336
[8]   General Decay Rates for a Laminated Beam with Memory [J].
Chen, Zhijing ;
Liu, Wenjun ;
Chen, Dongqin .
TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (05) :1227-1252
[9]   Dynamics of Laminated Timoshenko Beams [J].
Feng, B. ;
Ma, T. F. ;
Monteiro, R. N. ;
Raposo, C. A. .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (04) :1489-1507
[10]   Memory-type boundary control of a laminated Timoshenko beam [J].
Feng, Baowei ;
Soufyane, Abdelaziz .
MATHEMATICS AND MECHANICS OF SOLIDS, 2020, 25 (08) :1568-1588