A family of spatial biodiversity measures based on graphs

被引:26
作者
Rajala, Tuomas [1 ]
Illian, Janine [2 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
[2] Univ St Andrews, Sch Math & Stat, St Andrews, Fife, Scotland
基金
美国国家科学基金会; 美国安德鲁·梅隆基金会; 芬兰科学院;
关键词
Biodiversity; Neighbourhood; Spatial; Point pattern; Geometric graphs; FOREST STRUCTURE; DIVERSITY; PATTERNS; SEGREGATION;
D O I
10.1007/s10651-012-0200-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
While much research in ecology has focused on spatially explicit modelling as well as on measures of biodiversity, the concept of spatial (or local) biodiversity has been discussed very little. This paper generalises existing measures of spatial biodiversity and introduces a family of spatial biodiversity measures by flexibly defining the notion of the individuals' neighbourhood within the framework of graphs associated to a spatial point pattern. We consider two non-independent aspects of spatial biodiversity, scattering, i.e. the spatial arrangement of the individuals in the study area and exposure, the local diversity in an individual's neighbourhood. A simulation study reveals that measures based on the most commonly used neighbourhood defined by the geometric graph do not distinguish well between scattering and exposure. This problem is much less pronounced when other graphs are used. In an analysis of the spatial diversity in a rainforest, the results based on the geometric graph have been shown to spuriously indicate a decrease in spatial biodiversity when no such trend was detected by the other types of neighbourhoods. We also show that the choice of neighbourhood markedly impacts on the classification of species according to how strongly and in what way different species spatially structure species diversity. Clearly, in an analysis of spatial or local diversity an appropriate choice of local neighbourhood is crucial in particular in terms of the biological interpretation of the results. Due to its general definition, the approach discussed here offers the necessary flexibility that allows suitable and varying neighbourhood structures to be chosen.
引用
收藏
页码:545 / 572
页数:28
相关论文
共 47 条
[1]   An analysis of spatial forest structure using neighbourhood-based variables [J].
Aguirre, O ;
Hui, GY ;
von Gadow, K ;
Jiménez, J .
FOREST ECOLOGY AND MANAGEMENT, 2003, 183 (1-3) :137-145
[2]  
[Anonymous], STOCHASTIC GEOMETRY
[3]  
[Anonymous], J ECOL
[4]  
[Anonymous], 2000, Spatial tessellations: concepts and applications of Voronoi diagrams
[5]  
[Anonymous], 1995, STOCHASTIC GEOMETRY
[6]   Area-interaction point processes [J].
Baddeley, AJ ;
vanLieshout, MNM .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1995, 47 (04) :601-619
[7]   Spatial patterns of plant association in grazed and ungrazed shrublands in the semi-arid Karoo, South Africa [J].
Bossdorf, O ;
Schurr, F ;
Schumacher, J .
JOURNAL OF VEGETATION SCIENCE, 2000, 11 (02) :253-258
[8]   Monitoring change in biodiversity through composite indices [J].
Buckland, ST ;
Magurran, AE ;
Green, RE ;
Fewster, RM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1454) :243-254
[9]   Linking species diversity to the functioning of ecosystems: on the importance of environmental context [J].
Cardinale, BJ ;
Nelson, K ;
Palmer, MA .
OIKOS, 2000, 91 (01) :175-183
[10]   Overall and pairwise segregation tests based on nearest neighbor contingency tables [J].
Ceyhan, Elvan .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (08) :2786-2808