Galaxy morphology classification with deep convolutional neural networks

被引:86
作者
Zhu, Xiao-Pan [1 ,2 ]
Dai, Jia-Ming [1 ,2 ]
Bian, Chun-Jiang [1 ]
Chen, Yu [1 ]
Chen, Shi [1 ]
Hu, Chen [1 ,2 ]
机构
[1] Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Galaxy morphology classification; Deep learning; Convolutional neural networks; ZOO; DEPENDENCE;
D O I
10.1007/s10509-019-3540-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a variant of residual networks (ResNets) for galaxy morphology classification. The variant, together with other popular convolutional neural networks (CNNs), is applied to a sample of 28790 galaxy images from the Galaxy Zoo 2 dataset, to classify galaxies into five classes, i.e., completely round smooth, in-between smooth (between completely round and cigar-shaped), cigar-shaped smooth, edge-on and spiral. Various metrics, such as accuracy, precision, recall, F1 value and AUC, show that the proposed network achieves state-of-the-art classification performance among other networks, namely, Dieleman, AlexNet, VGG, Inception and ResNets. The overall classification accuracy of our network on the testing set is 95.2083% and the accuracy of each type is given as follows: completely round, 96.6785%; in-between, 94.4238%; cigar-shaped, 58.6207%; edge-on, 94.3590% and spiral, 97.6953%. Our model algorithm can be applied to large-scale galaxy classification in forthcoming surveys, such as the Large Synoptic Survey Telescope (LSST) survey.
引用
收藏
页数:15
相关论文
共 51 条
[21]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[22]  
He K., 2015, IEEE I CONF COMP VIS, P1026, DOI DOI 10.1109/ICCV.2015.123
[23]   Identity Mappings in Deep Residual Networks [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 :630-645
[24]   Measuring photometric redshifts using galaxy images and Deep Neural Networks [J].
Hoyle, B. .
ASTRONOMY AND COMPUTING, 2016, 16 :34-40
[25]   A CATALOG OF VISUAL-LIKE MORPHOLOGIES IN THE 5 CANDELS FIELDS USING DEEP LEARNING [J].
Huertas-Company, M. ;
Gravet, R. ;
Cabrera-Vives, G. ;
Perez-Gonzalez, P. G. ;
Kartaltepe, J. S. ;
Barro, G. ;
Bernardi, M. ;
Mei, S. ;
Shankar, F. ;
Dimauro, P. ;
Bell, E. F. ;
Kocevski, D. ;
Koo, D. C. ;
Faber, S. M. ;
Mcintosh, D. H. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2015, 221 (01)
[26]   Revisiting the Hubble sequence in the SDSS DR7 spectroscopic sample: a publicly available Bayesian automated classification [J].
Huertas-Company, M. ;
Aguerri, J. A. L. ;
Bernardi, M. ;
Mei, S. ;
Sanchez Almeida, J. .
ASTRONOMY & ASTROPHYSICS, 2011, 525
[27]  
Ioffe S, 2015, PR MACH LEARN RES, V37, P448
[28]  
Kim E. J., 2016, MONTHLY NOTICES ROYA, P2672
[29]   AN INTRODUCTION TO NEURAL COMPUTING [J].
KOHONEN, T .
NEURAL NETWORKS, 1988, 1 (01) :3-16
[30]   Galaxy Zoo: the large-scale spin statistics of spiral galaxies in the Sloan Digital Sky Survey [J].
Land, Kate ;
Slosar, Anze ;
Lintott, Chris ;
Andreescu, Dan ;
Bamford, Steven ;
Murray, Phil ;
Nichol, Robert ;
Raddick, M. Jordan ;
Schawinski, Kevin ;
Szalay, Alex ;
Thomas, Daniel ;
Vandenberg, Jan .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 388 (04) :1686-1692