Metabolite identification and molecular fingerprint prediction through machine learning

被引:137
作者
Heinonen, Markus [1 ,2 ]
Shen, Huibin [1 ]
Zamboni, Nicola [3 ]
Rousu, Juho [3 ,4 ]
机构
[1] Univ Helsinki, Dept Comp Sci, Helsinki 00014, Finland
[2] Helsinki Inst Informat Technol, Helsinki, Finland
[3] ETH, Dept Biol, Inst Mol Syst Biol, CH-8093 Zurich, Switzerland
[4] Aalto Univ, Dept Informat & Comp Sci, Espoo 00076, Finland
基金
芬兰科学院;
关键词
MASS-SPECTROMETRY; PROBABILITIES; METABOLOMICS; INFORMATION; SPECTRA; SEARCH;
D O I
10.1093/bioinformatics/bts437
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Metabolite identification from tandem mass spectra is an important problem in metabolomics, underpinning subsequent metabolic modelling and network analysis. Yet, currently this task requires matching the observed spectrum against a database of reference spectra originating from similar equipment and closely matching operating parameters, a condition that is rarely satisfied in public repositories. Furthermore, the computational support for identification of molecules not present in reference databases is lacking. Recent efforts in assembling large public mass spectral databases such as MassBank have opened the door for the development of a new genre of metabolite identification methods. Results: We introduce a novel framework for prediction of molecular characteristics and identification of metabolites from tandem mass spectra using machine learning with the support vector machine. Our approach is to first predict a large set of molecular properties of the unknown metabolite from salient tandem mass spectral signals, and in the second step to use the predicted properties for matching against large molecule databases, such as PubChem. We demonstrate that several molecular properties can be predicted to high accuracy and that they are useful in de novo metabolite identification, where the reference database does not contain any spectra of the same molecule.
引用
收藏
页码:2333 / 2341
页数:9
相关论文
共 22 条
[1]  
[Anonymous], 2004, KERNEL METHODS PATTE
[2]  
[Anonymous], 1984, OLSHEN STONE CLASSIF, DOI 10.2307/2530946
[3]  
Bakir G.H., 2007, Predicting structured data
[4]  
Bocker S., 2009, BIOINFOMATICS, V25, P1
[5]  
Curry B., 1992, MSnet: a neural network that classifies mass spectra, DOI 10.1016/0898-5529(90)90053-B
[6]   COMPUTER-AIDED INTERPRETATION OF MASS-SPECTRA .9. INFORMATION ON SUBSTRUCTURAL PROBABILITIES FROM STIRS [J].
DAYRINGER, HE ;
PESYNA, GM ;
VENKATARAGHAVAN, R ;
MCLAFFERTY, FW .
ORGANIC MASS SPECTROMETRY, 1976, 11 (05) :529-542
[7]   Identification of bacteria using tandem mass spectrometry combined with a proteome database and statistical scoring [J].
Dworzanski, JP ;
Snyder, AP ;
Chen, R ;
Zhang, HY ;
Wishart, D ;
Li, L .
ANALYTICAL CHEMISTRY, 2004, 76 (08) :2355-2366
[8]   FiD:: a software for ab initio structural identification of product ions from tandem mass spectrometric data [J].
Heinonen, Markus ;
Rantanen, Ari ;
Mielikaeinen, Taneli ;
Kokkonen, Juha ;
Kiuru, Jari ;
Ketola, Raimo A. ;
Rousu, Juho .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2008, 22 (19) :3043-3052
[9]   MassBank: a public repository for sharing mass spectral data for life sciences [J].
Horai, Hisayuki ;
Arita, Masanori ;
Kanaya, Shigehiko ;
Nihei, Yoshito ;
Ikeda, Tasuku ;
Suwa, Kazuhiro ;
Ojima, Yuya ;
Tanaka, Kenichi ;
Tanaka, Satoshi ;
Aoshima, Ken ;
Oda, Yoshiya ;
Kakazu, Yuji ;
Kusano, Miyako ;
Tohge, Takayuki ;
Matsuda, Fumio ;
Sawada, Yuji ;
Hirai, Masami Yokota ;
Nakanishi, Hiroki ;
Ikeda, Kazutaka ;
Akimoto, Naoshige ;
Maoka, Takashi ;
Takahashi, Hiroki ;
Ara, Takeshi ;
Sakurai, Nozomu ;
Suzuki, Hideyuki ;
Shibata, Daisuke ;
Neumann, Steffen ;
Iida, Takashi ;
Tanaka, Ken ;
Funatsu, Kimito ;
Matsuura, Fumito ;
Soga, Tomoyoshi ;
Taguchi, Ryo ;
Saito, Kazuki ;
Nishioka, Takaaki .
JOURNAL OF MASS SPECTROMETRY, 2010, 45 (07) :703-714
[10]  
Jebara T, 2004, J MACH LEARN RES, V5, P819