Existence and stability of periodic solutions of delayed cellular neural networks

被引:19
作者
Li, YK [1 ]
Zhu, LF [1 ]
Liu, P [1 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Yunnan, Peoples R China
关键词
cellular neural networks (CNNs); state-dependent delay; periodic solution; stability; coincidence degree;
D O I
10.1016/j.nonrwa.2005.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the continuation theorem of coincidence degree theory and Liapunov function to study the existence and stability of positive periodic solutions for cellular neural networks (CNNs) with distributed delays [GRAPHICS] and cellular neural networks (CNNs) with state-dependent delays [GRAPHICS] (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 7 条
[1]   New results concerning exponential stability and periodic solutions of delayed cellular neural networks [J].
Cao, JD .
PHYSICS LETTERS A, 2003, 307 (2-3) :136-147
[2]   CELLULAR NEURAL NETWORKS - APPLICATIONS [J].
CHUA, LO ;
YANG, L .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (10) :1273-1290
[3]  
Chua LO, 1998, CNN: A Paradigm for Complexity
[4]  
Gaines RE, 1977, COINCIDENCE DEGREE N, DOI DOI 10.1007/BFB0089537
[5]   Periodic solutions of periodic delay Lotka-Volterra equations and systems [J].
Li, YK ;
Kuang, Y .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 255 (01) :260-280
[6]  
MAWHIN JL, 1979, 40 CBMS REG C SER MA
[7]  
ROSKA T, 1995, CELLULAR NEURAL NETW