Nonlinear Lie derivations on upper triangular matrices

被引:47
作者
Chen, Lin [1 ]
Zhang, Jianhua [1 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear Lie derivation; upper triangular matrix; Lie product;
D O I
10.1080/03081080701688119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M(n)(A) and T(n)(A) be the algebra of all n n matrices and the algebra of all n n upper triangular matrices over a commutative unital algebra , respectively. In this note we prove that every nonlinear Lie derivation from T(n)(A) into M(n)(A) is of the form A -> AT - TA + A(phi) + xi(A)I(n), where T is an element of M(n)(A), phi: A -> A is an additive derivation, xi:T(n)(A)-> A is a nonlinear map with xi(AB - BA) = 0 for all A, B is an element of T(n)(A) and A(phi) is the image of A(phi) under applied entrywise.
引用
收藏
页码:725 / 730
页数:6
相关论文
共 5 条
[1]   Lie derivations of triangular algebras [J].
Cheung, WS .
LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (03) :299-310
[2]   Maps on upper triangular matrices preserving Lie products [J].
Dolinar, Gregor .
LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (02) :191-198
[4]   The structure of Lie derivations on C*-algebras [J].
Mathieu, M ;
Villena, AR .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 202 (02) :504-525
[5]  
[张建华 Zhang Jianhua], 2003, [数学学报, Acta Mathematica Sinica], V46, P657