An inverse Sturm-Liouville problem with a fractional derivative

被引:31
作者
Jin, Bangti [1 ]
Rundell, William
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
Sturm-Liouville problem; Inverse problem; Fractional differential equation; Mittag-Leffler function; WAVE-EQUATIONS; ANOMALOUS DIFFUSION; DYNAMICS; DISPERSION; ADVECTION;
D O I
10.1016/j.jcp.2012.04.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we numerically investigate an inverse problem of recovering the potential term in a fractional Sturm-Liouville problem from one spectrum. The qualitative behaviors of the eigenvalues and eigenfunctions are discussed, and numerical reconstructions of the potential with a Newton method from finite spectral data are presented. Surprisingly, it allows very satisfactory reconstructions for both smooth and discontinuous potentials, provided that the order alpha is an element of (1,2) of fractional derivative is sufficiently away from 2. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4954 / 4966
页数:13
相关论文
共 31 条
[11]   INVERSE STURM-LIOUVILLE PROBLEM [J].
HOCHSTADT, H .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1973, 26 (5-6) :715-729
[12]   Finite difference/spectral approximations for the time-fractional diffusion equation [J].
Lin, Yumin ;
Xu, Chuanju .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) :1533-1552
[13]   A backward problem for the time-fractional diffusion equation [J].
Liu, J. J. ;
Yamamoto, M. .
APPLICABLE ANALYSIS, 2010, 89 (11) :1769-1788
[14]   THE RECOVERY OF POTENTIALS FROM FINITE SPECTRAL DATA [J].
LOWE, BD ;
PILANT, M ;
RUNDELL, W .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (02) :482-504
[15]   Multidimensional advection and fractional dispersion [J].
Meerschaert, MM ;
Benson, DA ;
Bäumer, B .
PHYSICAL REVIEW E, 1999, 59 (05) :5026-5028
[16]   Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation [J].
Metzler, R ;
Nonnenmacher, TF .
CHEMICAL PHYSICS, 2002, 284 (1-2) :67-90
[17]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[18]   The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics [J].
Metzler, R ;
Klafter, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (31) :R161-R208
[19]  
Nahusev A. M., 1977, DOKL AKAD NAUK SSSR, V234, P308
[20]  
Popov A. Y., 2008, J MATH SCI, V151, P2726