H1-integrals with respect to some bases

被引:0
作者
Sworowski, Piotr [1 ]
机构
[1] Casimirus Great Univ, Dept Math, PL-85072 Bydgoszcz, Poland
关键词
H-1-integral; differential basis; Kurzweil-Henstock integral; Riemann-Lebesgue theorem;
D O I
10.1007/s10986-013-9213-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1998, Garces, Lee, and Zhao defined the so-called H (1)-integral [I.J.L. Garces, P.Y. Lee, and D. Zhao, Moore-Smith limits and the Henstock integral, Real Anal. Exch., 24(1):447-456, 1998/99]. Later on, a full characterization of H (1)-integrable functions was given by Maliszewski and the author [A. Maliszewski and P. Sworowski, A characterization of H (1)-integrable functions, Real Anal. Exch., 28(1):93-104, 2002/03]. The characterization is in terms of generalized continuity and so is similar to the classical Lebesgue theorem on Riemann integrands. The present paper contributes to the theory with some results of this type for H (1)-integral defined with respect to differential bases: namely, the McShane basis, path bases, and so-called free point bases. In the latter two cases, the characterization is partial (necessity condition being provided only).
引用
收藏
页码:356 / 366
页数:11
相关论文
共 14 条
[1]   The Ward property for a P-adic basis and the P-adic integral [J].
Bongiorno, B ;
Di Piazza, L ;
Skvortsov, VA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 285 (02) :578-592
[2]  
Filipczak T., 1989, REAL ANAL EXCH, V15, P170
[3]  
Garces I. J. L., 1998, REAL ANAL EXCHANGE, V24, P447
[4]  
Gordon R A., 1994, GRAD STUD MATH, DOI DOI 10.1090/GSM/004
[5]  
GORDON RA, 1997, REAL ANAL EXCH, V23, P329
[6]   ON THE BAIRE CLASS OF I-APPROXIMATE DERIVATIVES [J].
LAZAROW, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 100 (04) :669-674
[7]  
Maliszewski A., 2002, REAL ANAL EXCH, V28, P93
[8]  
Maliszewski A., 2002, 26 SUMM S C LEX VA J, P155
[9]   A CATEGORY ANALOG OF THE DENSITY TOPOLOGY [J].
POREDA, W ;
WAGNERBOJAKOWSKA, E ;
WILCZYNSKI, W .
FUNDAMENTA MATHEMATICAE, 1985, 125 (02) :167-173
[10]   THE PROXIMALLY CONTINUOUS INTEGRALS [J].
SARKHEL, DN ;
DE, AK .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1981, 31 (JUN) :26-45