DYNAMIC MRI RECONSTRUCTION USING LOW RANK PLUS SPARSE TENSOR DECOMPOSITION

被引:0
作者
Roohi, Shahrooz Faghih [1 ]
Zonoobi, Domoosh [2 ]
Kassim, Ashraf A. [1 ]
Jaremko, Jacob L. [2 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore, Singapore
[2] Univ Alberta Hosp, Dept Radiol & Diagnost Imaging, Edmonton, AB T6G 2B7, Canada
来源
2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2016年
关键词
Low-Rank and Sparse Tensor Decomposition; Dynamic 3D MRI; Image Reconstruction; Compressive sensing; SEQUENCES; SIGNALS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we introduce a multi-dimensional approach to the problem of reconstruction of MR image sequences that are highly undersampled in k-space. By formulating the reconstruction as a high-order low-rank plus sparse tensor decomposition problem, we propose an efficient numerical algorithm based on the alternating direction method of multipliers (ADMM) to solve the optimization. Through extensive experimental results we show that our proposed method achieves superior reconstruction quality, compared to the state-of-the-art reconstruction methods.
引用
收藏
页码:1769 / 1773
页数:5
相关论文
共 26 条
[1]  
Andreopoulos A., 2014, MED IMAGE ANAL, V9, P335
[2]  
[Anonymous], HIGHER ORDER SVD THE
[3]   The Higher-Order Singular Value Decomposition: Theory and an Application [J].
Bergqvist, Goran ;
Larsson, Erik G. .
IEEE SIGNAL PROCESSING MAGAZINE, 2010, 27 (03) :151-154
[4]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[5]   A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION [J].
Cai, Jian-Feng ;
Candes, Emmanuel J. ;
Shen, Zuowei .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :1956-1982
[6]   Computing Sparse Representations of Multidimensional Signals Using Kronecker Bases [J].
Caiafa, Cesar F. ;
Cichocki, Andrzej .
NEURAL COMPUTATION, 2013, 25 (01) :186-220
[7]   Tensor Decompositions for Signal Processing Applications [J].
Cichocki, Andrzej ;
Mandic, Danilo P. ;
Anh Huy Phan ;
Caiafa, Cesar F. ;
Zhou, Guoxu ;
Zhao, Qibin ;
De Lathauwer, Lieven .
IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (02) :145-163
[8]   On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1324-1342
[9]  
Ding XH, 2013, IEEE IMAGE PROC, P2319, DOI 10.1109/ICIP.2013.6738478
[10]   Kronecker Compressive Sensing [J].
Duarte, Marco F. ;
Baraniuk, Richard G. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (02) :494-504