Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing

被引:581
作者
Fuller, Elliot J. [1 ]
Keene, Scott T. [2 ]
Melianas, Armantas [2 ]
Wang, Zhongrui [3 ]
Agarwal, Sapan [1 ]
Li, Yiyang [1 ]
Tuchman, Yaakov [2 ]
James, Conrad D. [4 ]
Marinella, Matthew J. [4 ]
Yang, J. Joshua [3 ]
Salleo, Alberto [2 ]
Talin, A. Alec [1 ]
机构
[1] Sandia Natl Labs, Livermore, CA 94550 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Univ Massachusetts, Dept Comp Sci & Elect Engn, Amherst, MA 01003 USA
[4] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
基金
美国国家科学基金会;
关键词
D O I
10.1126/science.aaw5581
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neuromorphic computers could overcome efficiency bottlenecks inherent to conventional computing through parallel programming and readout of artificial neural network weights in a crossbar memory array. However, selective and linear weight updates and <10-nanoampere read currents are required for learning that surpasses conventional computing efficiency. We introduce an ionic floating-gate memory array based on a polymer redox transistor connected to a conductive-bridge memory (CBM). Selective and linear programming of a redox transistor array is executed in parallel by overcoming the bridging threshold voltage of the CBMs. Synaptic weight readout with currents <10 nanoamperes is achieved by diluting the conductive polymer with an insulator to decrease the conductance. The redox transistors endure >1 billion write-read operations and support >1-megahertz write-read frequencies.
引用
收藏
页码:570 / +
页数:27
相关论文
共 36 条
[1]  
Agarwal S, 2016, IEEE IJCNN, P929, DOI 10.1109/IJCNN.2016.7727298
[2]   Energy Scaling Advantages of Resistive Memory Crossbar Based Computation and Its Application to Sparse Coding [J].
Agarwal, Sapan ;
Quach, Tu-Thach ;
Parekh, Ojas ;
Hsia, Alexander H. ;
DeBenedictis, Erik P. ;
James, Conrad D. ;
Marinella, Matthew J. ;
Aimone, James B. .
FRONTIERS IN NEUROSCIENCE, 2016, 9
[3]  
[Anonymous], 2013, Proceedings of the 30th International Conference on Machine Learning, Cycle
[4]   Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element [J].
Burr, Geoffrey W. ;
Shelby, Robert M. ;
Sidler, Severin ;
di Nolfo, Carmelo ;
Jang, Junwoo ;
Boybat, Irem ;
Shenoy, Rohit S. ;
Narayanan, Pritish ;
Virwani, Kumar ;
Giacometti, Emanuele U. ;
Kuerdi, Bulent N. ;
Hwang, Hyunsang .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (11) :3498-3507
[5]   Ultra compact electrochemical metallization cells offering reproducible atomic scale memristive switching [J].
Cheng, Bojun ;
Emboras, Alexandros ;
Salamin, Yannick ;
Ducry, Fabian ;
Ma, Ping ;
Fedoryshyn, Yuriy ;
Andermatt, Samuel ;
Luisier, Mathieu ;
Leuthold, Juerg .
COMMUNICATIONS PHYSICS, 2019, 2 (1)
[6]   SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations [J].
Choi, Shinhyun ;
Tan, Scott H. ;
Li, Zefan ;
Kim, Yunjo ;
Choi, Chanyeol ;
Chen, Pai-Yu ;
Yeon, Hanwool ;
Yu, Shimeng ;
Kim, Jeehwan .
NATURE MATERIALS, 2018, 17 (04) :335-+
[7]   Light-tuned selective photosynthesis of azo- and azoxy-aromatics using graphitic C3N4 [J].
Dai, Yitao ;
Li, Chao ;
Shen, Yanbin ;
Lim, Tingbin ;
Xu, Jian ;
Li, Yongwang ;
Niemantsverdriet, Hans ;
Besenbacher, Flemming ;
Lock, Nina ;
Su, Ren .
NATURE COMMUNICATIONS, 2018, 9
[8]   Li-Ion Synaptic Transistor for Low Power Analog Computing [J].
Fuller, Elliot J. ;
El Gabaly, Farid ;
Leonard, Franois ;
Agarwal, Sapan ;
Plimpton, Steven J. ;
Jacobs-Gedrim, Robin B. ;
James, Conrad D. ;
Marinella, Matthew J. ;
Talin, A. Alec .
ADVANCED MATERIALS, 2017, 29 (04)
[9]   Resistance-dependent amplitude of random telegraph-signal noise in resistive switching memories [J].
Ielmini, Daniele ;
Nardi, Federico ;
Cagli, Carlo .
APPLIED PHYSICS LETTERS, 2010, 96 (05)
[10]  
Jacobs-Gedrim RB, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC), P160